01 Векторы
Ошибка.
Попробуйте повторить позже
Даны векторы: ,
. Найдите модуль (длину) вектора
. (Ответ округлить
до сотых).
Вектор
Модуль вектора можем найти через теорему Пифагора:
Ошибка.
Попробуйте повторить позже
Даны векторы: ,
,
. Найдите модуль (длину) вектора
.
(Ответ округлить до сотых).
Вектор
Модуль вектора можем найти через теорему Пифагора:
Ошибка.
Попробуйте повторить позже
Даны векторы: ,
. Найдите модуль (длину) вектора
. (Ответ
округлить до сотых).
Чтобы найти координаты вектора суммы векторов, нужно сложить координаты этих векторов:
Модуль вектора можем найти через теорему Пифагора:
Ошибка.
Попробуйте повторить позже
На рисунке изображен вектор .
1) Найдите проекцию вектора
на ось
.
2) Найдите проекцию вектора
на ось
.
В ответ запишите два числа без пробелов и запятых.
1) Опустим перпендикуляры из начала и конца вектора на ось .
Из полученного чертежа видно, что проекция равна
2) Опустим перпендикуляры из начала и конца вектора на ось .
Из полученного чертежа видно, что проекция равна
Ошибка.
Попробуйте повторить позже
На рисунке изображены векторы. Найдите координаты (проекции) векторов. (В ответ запишите сумму проекций).
Опустим перпендикуляры из начала и конца каждого вектора на соответсвущие оси. Отобразим это на новом чертеже:
Найдем сумму проекций на обе оси для каждого вектора отдельно:
Для :
Для
Для
Для
Тогда сумма всех проекций:
Ошибка.
Попробуйте повторить позже
Тело массой движется по наклонной плоскости с углом наклона
.
1) Найдите проекцию силы тяжести на ось .
2) Найдите проекцию силы тяжести на ось .
(Ответ дайте в ньютонах, округлив до целых). В ответ запишите два числа без пробелов и запятых.
1) Проекция силы тяжести на ось вычисляется по формуле :
Причем проекция положительна, т.к. тело движется сонаправленно с осью .
2) Проекция силы тяжести на ось вычисляется по формуле :
Причем проекция отрицательна, т.к. сила тяжести противоположно направлена оси .
Ошибка.
Попробуйте повторить позже
Тело находится на наклонной плоскости. Угол наклона . На него действует сила реакции опоры
.
1) Найдите проекцию силы реакции опоры на ось
.
2) Найдите проекцию силы реакции опоры на ось
.
(Ответ дайте в ньютонах, округлив до целых).
1) Спроецируем силу реакции опоры на ось
: Таким образом,
.
2) Спроецируем силу реакции опоры на ось
: Таким образом,
.
Ошибка.
Попробуйте повторить позже
Тело скользит по наклонной плоскости вверх. Угол наклона . На него действует сила реакции
опоры
. Коэффициент трения равен
. Модуль силы трения
вычисляется по
формуле
.
1) Найдите проекцию силы трения на ось
.
2) Найдите проекцию силы трения на ось
.
(Ответ дайте в ньютонах, округлив до целых).
1) Спроецируем силу трения на ось
:
Таким образом,
2) Спроецируем силу трения на ось
:
Таким образом,
Ошибка.
Попробуйте повторить позже
Тело массой скользит по наклонной плоскости. Угол наклона
. На него
действует сила реакции опоры
. Коэффициент трения равен
. Найдите сумму
проекций всех сил, действующих на тело. (Ответ дайте в ньютонах, округлив до целых).
Спроецируем силы, действующие на тело, на оси и
:
Проекции сил на ось :
Проекции сил на ось :
Найдем сумму этих проекций:
Сила трения находится по формуле:
Подставим (2) в (1):
Ошибка.
Попробуйте повторить позже
На точку действуют две равные по модулю силы
и
, направленные под углом
друг к
другу (
). Чему равен модуль равнодействующей этих сил? Ответ дать в
ньютонах.
Примечание: Равнодействующая сил – это векторная сумма всех сил, действующих на тело.
Изобразим силы, действующие на точку . Найдем равнодействующую сил
и
по правилу
параллелограмма:
По теореме косинусов:
Ошибка.
Попробуйте повторить позже
Самолет в безветренную погоду взлетает со скоростью под углом
к горизонту.
Найти вертикальную и горизонтальную составляющие скорости самолёта. (В ответ записать
произведение составлящих и округлить до целого).
Обозначим вертикальную составляющую вектора скорости как
, а горизонтальную — как
(рис. 1).
Используя факт, что треугольник прямоугольный, проекции можно выразить через угол (рис. 2).
Синус угла есть отношение противолежащего катета к гипотенузе: