Логарифмы
Ошибка.
Попробуйте повторить позже
Целые числа удовлетворяют равенству Найдите наименьшее возможное значение выражения
Подсказка 1
Давайте подумаем. У нас есть сумма произведений каких-то констант на х, y, z. При этом, нам надо максимизировать x^2 + y^2 + z^2. Какое неравенство нам это напоминает? Что первым приходит в голову здесь?
Подсказка 2
Конечно же, неравенство КБШ! Тогда, по этому неравенству у нас выходит, что ((ln16)^2 + (ln8)^2 + (ln24)^2)(x^2 + y^2 + z^2) >= (ln6)^2. Тогда, выходит, что мы получили оценку на минимум нашей суммы. Достигается ли в КБШ равенство, если да, то когда?
Так то из последнего уравнения вида получаем , то есть следующую систему:
Поскольку то С учётом равенств запишем
Чтобы найти минимум, найдем координаты вершины параболы ветви которой направлены вверх, значит минимум достигается в вершине.
Так как парабола симметрична относительно вершины, то минимальное целое значение будет достигаться при Тогда искомое значение равняется
Ошибка.
Попробуйте повторить позже
Решите систему
Источники:
Подсказка 1
Кажется, от дробей здесь нет пользы, они только пугают. Может, избавится от них? Только не забудьте про ОДЗ!
Подсказка 2
Получается как-то очень много одинаковых логарифмов. Когда много одинакового, то на помощь приходит замена.
Подсказка 3
Система из трёх не очень страшных уравнений, можно и подстановкой попробовать решить. Но не забывайте проверять решения на ОДЗ!
Запишем ОДЗ:
Преобразуем систему к виду
Используем формулу перехода к новому основанию и формулу логарифма произведения
Сделаем замену: получаем систему
Из первого уравнения системы выразим
Из третьего уравнения выразим
Подставим во второе уравнение системы, получим после преобразований уравнение
При получаем но соответствующие значения не удовлетворяют ОДЗ. При получаем следовательно,
Ошибка.
Попробуйте повторить позже
Докажите неравенство
Источники:
Подсказка 1
Какое неравенство хочется доказать для аргумента логарифма, благодаря которому задача будет решена?
Подсказка 2
Попробуем доказать такое неравенство: log₂(x+1) > x, для любого x от 0 до 1. Как его можно доказать? Как вообще доказываются многие неравенства?
Подсказка 3
Мы знаем, что можно понять о возрастании/убывании функции через производную. А именно можно посмотреть на вторую производную какой-то хорошей функции, какой же?
Подсказка 4
Например, на вторую производную функции n+1-2ⁿ. Чему она равна и какой вывод мы из этого можем сделать?
Подсказка 5
Вторая производная равна -ln²2*2ⁿ, которая очевидно меньше 0 на всём промежутке (0;1)
Докажем, что для всех верно неравенство
______________________________________________________________________________________________________________________________________________________
Для этого достаточно показать, что Действительно, пусть , тогда , следовательно, выпукла вверх на отрезке Кроме этого и , а значит, для всех , а значит, для всех , откуда получаем требуемое.
_________________________________________________________________________________________________________________________________________________________________________________
Так как и то применяем доказанное неравенство:
Ошибка.
Попробуйте повторить позже
Решите неравенство
Сделаем замену
Функции в скобках монотонные, поэтому знак неравенства совпадает со знаком , что равносильно
Ошибка.
Попробуйте повторить позже
Решите уравнение .
Запишем ОДЗ:
Преобразуем исходное уравнение
Видно, что не подходит под ОДЗ, а подходит. Значит, ответ —
Ошибка.
Попробуйте повторить позже
Найдите значение выражения .
Подсказка 1
"Сверните" разность логарифмов в логарифм частного по свойству и посчитайте, чему полученное выражение равно.
Ошибка.
Попробуйте повторить позже
Известно, что . Найти .
Подсказка 1
Пользуясь свойством логарифма получим значение 1/а, который равен "перевернутому" логарифму
Подсказка 2
Помним, что log(a*b)=log(a)+log(b), а 28=7*4
Ошибка.
Попробуйте повторить позже
Решите уравнение .
Подсказка
По свойству логарифма вынесем степень над x, а затем решим получившееся уравнение
Запишем ОДЗ:
Теперь преобразуем исходное уравнение
Ошибка.
Попробуйте повторить позже
Решите уравнение .
Подсказка 1
Запишем ОДЗ и сократим степени основания и аргумента у первого логарифма, получив |х| в аргументе
Подсказка 2
Разберем 2 случая раскрытия модуля и решим квадратные уравнения
Запишем ОДЗ:
Теперь преобразуем данное уравнение
Решив эти квадратные уравнения, получим 4 корня
По ОДЗ не подходит, а подходят.
Ошибка.
Попробуйте повторить позже
Решите неравенство
Запишем ОДЗ:
Теперь преобразуем наше исходное неравенство
Пересечём с ОДЗ и получим итоговый ответ —
Ошибка.
Попробуйте повторить позже
Решите неравенство
Запишем ОДЗ:
Применим метод рационализации
Пересечём с ОДЗ и получим итоговый ответ —
Ошибка.
Попробуйте повторить позже
Решите неравенство
Запишем ОДЗ:
Применим метод рационализации к данному неравенству, получив равносильное на ОДЗ неравенство
Применим метод интервалов
Учтя ограничения ОДЗ, получим итоговый ответ
Ошибка.
Попробуйте повторить позже
Решите неравенство
По свойствам логарифмов неравенство равносильно
При получаем
Так что
При получаем
Так что
Объединяя промежутки из двух случаев, получаем ответ.
Ошибка.
Попробуйте повторить позже
Решите неравенство
Выпишем ограничения:
Решая эту систему получаем, что
Используя метод рационализации на введенных ограничениях, получаем:
Рассмотрим отдельно второй множитель:
Тогда получаем:
Методом интервалов получаем, что С учетом ограничений получаем, что
Ошибка.
Попробуйте повторить позже
Решите неравенство
Источники:
ОДЗ неравенства:
Решим неравенство на ОДЗ с помощью метода рационализации. Левая часть имеет вид и равна на ОДЗ Следовательно, неравенство на ОДЗ равносильно
Пересечем полученные решения с ОДЗ и получим окончательный ответ
Ошибка.
Попробуйте повторить позже
Какое из двух чисел больше: или
Применим свойство степеней и основное логарифмическое тождество:
Ошибка.
Попробуйте повторить позже
Решите неравенство
Источники:
Подсказка 1
Что следует сделать в первую очередь, если перед нами — логарифм, в аргументе и основании которого выражение с переменной? А как можно преобразовать выражение такого вида?
Подсказка 2
Сразу записываем ОДЗ и используем метод рационализации! Чему равносильно выражение из условия?
Подсказка 3
(x+2)(x²- 7x + 12 - (x+3)²) <= 0. Осталось лишь решить его и пересечь с ОДЗ!
Сначала найдем ОДЗ:
Решая эту систему, получаем, что Теперь применим метод рационализации. Тогда получится неравенство
Во второй скобке приводим подобные:
Решая это неравенство, получаем, что Остается пересечь это множество с ОДЗ. Получается, что
Ошибка.
Попробуйте повторить позже
Решите неравенство
Источники:
Подсказка 1
Начнём как всегда с ОДЗ! Но что же делать дальше? Можно заметить, что основание обоих логарифмов равно произведению их аргументов: (x - 1)(x + 1) = x² - 1, как нам это поможет?
Подсказка 2
Сделаем замену: t = 8^(log_(x² - 1) (x - 1)). Умножьте обе части неравенства на t > 0 и по свойствам степеней преобразуйте наше выражение. Что у нас остаётся?
Подсказка 3
Перед нами всего лишь квадратичное неравенство, а с этим вы отлично умеете работать!
Подсказка 4
Осталось сделать обратную замену! Чтобы перейти к сравнению показателей степеней, удобно представить 8 и, получившееся в одной из частей двойного неравенства, 4 как степени двойки. Метод рационализации поможет нам добить задачу.
Запишем ОДЗ:
Домножим обе части исходного неравенства на
Сделаем замену получим
Тогда при обратной замене
Решим неравенства по-отдельности:
1)
Применим метод рационализации
С учётом ОДЗ получаем
2)
Применим метод рационализации
С учётом ОДЗ получаем
Пересекаем полученные полученные значения и получаем итоговый ответ
Ошибка.
Попробуйте повторить позже
Решите неравенство
Подсказка 1
Перед нами логарифмическое неравенство. Что делаем первым делом?
Подсказка 2
Записываем ОДЗ, конечно! Теперь на этом множестве можем совершать преобразования. Как будем действовать?
Подсказка 3
Основание первого логарифма является квадратом основания второго логарифма! Можем по свойству логарифмов вынести этот квадратик ;)
Подсказка 4
Чтобы избавиться от неприятного множителя 1/2, мы можем просто домножить обе части неравенства на 2. Тогда у второго логарифма появится коэффициент 2, который уже можем занести в степень аргумента!
Подсказка 5
Получили разность логарифмов с одинаковыми основаниями. Победа! Теперь после преобразования разности логарифмов к логарифму частного мы получим элементарное логарифмическое неравенство!
Подсказка 6
Задача свелась к простому дробно-рациональному неравенству. Остается его решить классическим методом интервалов и не забыть про ОДЗ!
Выпишем ОДЗ:
Умножим наше неравенство на преобразуем выражения под знаком логарифма:
Так как функция монотонно возрастает, то
Домножим на положительный (с учетом ОДЗ!) знаменатель:
По обратной теореме Виета у квадратного трехчлена в левой части — все его корни. Тогда
Пересекая с ОДЗ, получаем ответ.
Ошибка.
Попробуйте повторить позже
Решите неравенство
Подсказка 1
Перед нами логарифмическое неравенство, поэтому не забываем про ОДЗ ;) И в аргументе, и в основании логарифма стоят выражения с неизвестной, какой тогда метод решения удобно применить?
ОДЗ:
Применим метод рационализации:
Пересекая с ОДЗ, получаем