Счёт отрезков в стерео → .03 Случаи расположения точек
Ошибка.
Попробуйте повторить позже
Через каждую из сторон равностороннего треугольника со стороной 12 проведена плоскость, образующая угол
с плоскостью
этого треугольника. Эти три плоскости пересекаются в точке
. Чему может быть равно расстояние от
до плоскости
треугольника?
Опустим из точки перпендикуляр на плоскость
назовем полученную точку
Проведем из точек
и
перпендикуляры к
по теореме о трех перпендикулярах получим одну и ту же точку
Обозначим длину искомого отрезка за
Тогда катет
полученного прямоугольного треугольника
с углом
равен
В силу симметрии треугольника точка
равноудалена от прямых
и
на расстояние
значит,
либо центр
вписанной окружности, либо центр одной из вневписанных окружностей треугольника
Найдем расстояние между стороной и центром вписанной окружности
Так как — равносторонний, то высота
является медианой, значит,
Следовательно,
тогда
откуда
Рассмотрим случай, когда точка оказалась центром вневписанной окружности:
Тогда получим равносторонний треугольник со стороной
Найдем длину высоты
значит,
откуда
Ошибка.
Попробуйте повторить позже
В основании призмы лежит равносторонний треугольник площади 1. Площади её боковых граней равны 3, 3 и 2. Найдите объём призмы.
Если бы призма была прямая, то площади боковых граней были бы равны. Значит, призма наклонная.
Обозначим призму площади из условия
Пусть — высоты параллелограммов
и
Тогда
т.к. площади равны, а также равны их
основания, так как равносторонний треугольник.
Пусть — проекция
на плоскость
Тогда
следовательно, точка равноудалена от прямых
и
(a) Рассмотрим случай, когда принадлежит биссектрисе
угла
— высота, медиана и биссектриса в равностороннем
треугольнике.
Тогда получаем, что — прямоугольник. Пусть сторона треугольника
равна
Посчитаем площадь прямоугольника и
параллелограмма.
Но тогда
(b) Рассмотрим случай, когда принадлежит внешней биссектрисе
угла
Но следовательно,
откуда следует, что высота
параллелограмма
совпадает с
высотой призмы
В итоге
Ошибка.
Попробуйте повторить позже
Длина ребра куба равна 1. Найдите радиус сферы, проходящей через точку
и касающейся прямых
и
.
Введём декартову систему координат с центром в точке , ось абсцисс — луч
, ось ординат — луч
, ось аппликат — луч
.
Пусть — проекция центра сферы на грань
куба. Определим ее местоположение. Так как сфера касается прямых
и проходит через точку
, то расстояние от точки
до прямых
и
и точки
одинаково (обозначим его
).
Тогда
лежит на луче
, который является биссектрисой угла
. Осталось учесть условие, что центр сферы
касается прямой
, то есть нужно проверить, что расстояние от центра до прямой
совпадает с радиусом сферы
.
Заметим, что есть два случая расположения точки (на рисунке показаны разными цветами):
Случай 1: точка лежит на диагонали
.
Тогда из теоремы Пифагора для прямоугольного треугольника получим:
, откуда
. Значит,
центр сферы
имеет координаты
.
Расстояние до прямой равно
. То есть радиус
Случай 2: точка лежит на продолжении луча
.
Тогда из теоремы Пифагора для прямоугольного треугольника получим:
, откуда
. Значит,
центр сферы
в этом случае имеет координаты
.
Расстояние до прямой равно
. То есть радиус
Ошибка.
Попробуйте повторить позже
— правильная пирамида, в основании которой лежит правильный треугольник
со стороной 2. Боковые ребра пирамиды
равны 3. Найдите площадь равнобедренного треугольника, одна вершина которого совпадает с
, другая — с серединой
, а третья
лежит на отрезке
Обозначим искомый треугольник — середина
на
. Пусть
— середина
, тогда
— высота треугольника.
Если — проекция
на высоту
треугольника
, то по теореме Фалеса
равна половине
, где
— проекция
и одновременно центр описанной окружности (потому что боковые рёбра пирамиды равны), то есть равна половине радиуса описанной около
ABC окружности. По теореме синусов
, тогда
, а
,
тем самым
Поскольку ,
то по теореме Пифагора
Возможны случаи:
1) .
В этом случае совпадает с
, поскольку пирамида симметрична относительно плоскости, проходящей через середину
и
перпендикулярной
. Тогда
2) .
Но тогда . Но тогда точка
лежит вне отрезка
, иначе расстояние от
до неё было бы не больше
длины стороны треугольника
.
3) .
Заметим, что . Пусть
, запишем теоремы косинусов для
и
, выберем из
первого
, а из второго
в качестве противолежащих сторон, откуда
Подставляя в теорему косинусов, получаем
. Посчитаем высоту
из вершины
в треугольнике
с
учётом
Тогда
или
Ошибка.
Попробуйте повторить позже
Рассмотрим всевозможные тетраэдры , в которых
. Каждый такой тетраэдр впишем в
цилиндр так, чтобы все вершины оказались на его боковой поверхности, причём ребро
было параллельно оси цилиндра. Выберем
тетраэдр, для которого радиус цилиндра - наименьший из полученных. Какие значения может принимать длина
в таком
тетраэдре?
Источники:
Пусть — середина
и
— медианы равнобедренных треугольников
и
, a значит, биссектрисы и высоты. То есть
. Значит, отрезок
перпендикулярен плоскости
, следовательно,
.
Таким образом, лежит в плоскости, перпендикулярной оси цилиндра (обозначим эту плоскость через
). Сечение цилиндра этой
плоскостью — окружность, а
является хордой этой окружности. Тогда радиус цилиндра минимален, если
диаметр. Отметим,
что это возможно в силу того, что отрезки
и
длиннее, чем
. Действительно, из треугольников
и
следует,
что
Рассмотрим тетраэдр, в котором является диаметром цилиндра. Возможны 2 случая: точки
и
лежат по одну (этот случай
представлен выше) или по разные стороны плоскости
.
Пусть - проекция точек
и
на плоскость
. Угол
, так как он вписан в окружность и опирается на её диаметр.
в силу равенства треугольников
и
. Тогда
. По теореме Пифагора в прямоугольных
треугольниках
и
соответственно:
.
Тогда, если точки и
лежат по одну сторону от плоскости
, то
. Если точки
и
лежат по
разные стороны от плоскости
, то
.
Доказано, что 𝐴𝐵 – диаметр цилиндра наименьшего радиуса – 2 балла; если при этом не проверено, что точки 𝐶 и 𝐷 могут лежать на боковой поверхности такого цилиндра (например, можно доказать, что треугольники 𝐴𝐵𝐶 и 𝐴𝐵𝐷 остроугольные; можно сделать, как в решении), то 1 балл вместо 2;
найдены оба значения 𝐶𝐷 – 3 балла;
найдено только одно значение 𝐶𝐷 – 1 балл вместо 3.
Ошибка.
Попробуйте повторить позже
В основании пирамиды лежит треугольник
со сторонами
и
. Высота пирамиды равна
и видна из вершин
и
под одним и тем же углом, равным
. Под каким углом она видна из вершины
Источники:
Поскольку высота пирамиды видна из вершин
и
под одним и тем же углом, точка
лежит на медиане (она же биссектриса и
высота)
треугольника
или её продолжении.
Если ,
и
, а искомый угол
, то имеем
откуда, подставляя данные задачи, получаем , в зависимости от того, лежит ли точка
внутри треугольника
или вне него. Значит,
или
или
Ошибка.
Попробуйте повторить позже
Рассматриваются плоские сечения правильной пирамиды , параллельные боковому ребру
и диагонали основания
, в которые можно вписать окружность. Какие значения может принимать радиус этих окружностей, если
,
Источники:
Так как пирамида правильная, то в основании лежит квадрат с диагоналями , пусть
— его центр. Тогда
является
высотой пирамиды, так что из условия про косинус находим
Плоскость сечения параллельна , поэтому содержит параллельную
прямую из плоскости
. Поэтому сечение может быть
двух видов:
1 случай) треугольник , где
лежит внутри
.
Тогда (строго меньше единицы, потому что сечение параллельно
, содержать
не может). Пусть
.
Теперь найдём, чему равняется (то есть радиус вписанной окружности)
2 случай) Пятиугольное сечение плоскостью , где
лежит внутри
. Заметим, что
и
поэтому
и
Пусть
Тогда из подобий
и
получаем
Значит,
Также имеем
Откуда
Так как
Тогда по теореме Пифагора
Воспользуемся формулой
Тогда