Тригонометрия на Межведе
Ошибка.
Попробуйте повторить позже
Сравните числа и 22.
Источники:
Подсказка 1
Попробуем преобразовать сумму тангенсов. На что намекают их аргументы?
Подсказка 2
Если разделить тангенсы на пары: первый с последним, второй с предпоследним и так далее, то сумма аргументов будет 45. Какую формулу тогда нужно применить?
Подсказка 3
Формулу суммы тангенсов! Количество дробей намекает на то, что можно доказать, что каждая из них меньше 1 (дробей 22).
Подсказка 4
В знаменателе можно применить формулу произведения косинусов. Тогда один из них будет всегда равен половине числителя.
Сгруппируем крайние члены
По формуле суммы тангенсов
Заменим синус от 45 градусов на равный ему косинус и воспользуемся формулой произведения косинусов
Осталось заметить, что функция убывает на отрезке , а значит, верны неравенства для всех , следовательно, верны неравенства для всех , т.е. каждое слагаемое в сумме меньше 1. Таким образом, вся сумма меньше 22.
Ошибка.
Попробуйте повторить позже
Найдите количество целых решений уравнения
на отрезке
Источники:
Подсказка 1
Классическое уравнение на сумму синуса и косинуса, причём справа константа, сразу хочется как-то преобразовать обе части уравнения) Как?
Подсказка 2
Поделить обе части на √2, тогда сможем слева собрать в синус суммы, а справа останется константа! Остаётся лишь разобрать пару случаев)
Разделим обе части уравнения на
Отсюда получаем, что или Поскольку число не является целым, остается найти количество целых значений таких, что
Решениями неравенства являются целые числа
Ошибка.
Попробуйте повторить позже
Решите уравнение
Источники:
Подсказка 1
С косинусом 3x работать неудобно, сразу его раскроем. Теперь хочется уравнение преобразовать так, чтобы справа либо остался 0, либо так и осталась единица, но слева было произведение, которое мы можем оценить.
Подсказка 2
Вынесением общего множителя и использованием тригонометрических формул приходим к равенству cos(x)cos(4x)=1. Попробуем оценить левую часть.
Подсказка 3
Каждый из множителей лежит в определенном промежутке, значит можно разбить решение на два случая.
Подсказка 4
Понятно, что модуль обоих множителей должен быть равен единице. Осталось лишь работать два случая несложных систем)
Используем формулу косинуса тройного угла получаем
Разложим нашу левую часть в произведение чисел, каждое из которых по модулю не больше 1.
По основному тригонометрическому тождеству получаем
По формуле синуса двойного угла получаем
По формуле косинуса двойного угла получаем
Так как и то равенство возможно только в двух случаях
Рассмотрим систему
Решим уравнение Получаем Заметим, что эти решения также являются и решениями второго уравнения
системы, поэтому для первой системы имеем
Рассмотрим теперь вторую систему
Решим уравнение Получаем Подставим эти решения во второе уравнение системы и получим
— противоречие. Значит, у второй системы нет решений.
Ошибка.
Попробуйте повторить позже
Известно, что число является корнем уравнения
Найдите остальные четыре корня этого уравнения.
(Ответы в задаче должны быть компактными выражениями, не содержащими знаков суммирования, многоточий и т.п.)
Источники:
Подсказка 1
Давайте искать решение в виде t = cos(x). Подставим его в уравнение и попробуем преобразовать левую часть. Какими формулами можно воспользоваться, чтобы уменьшить показатели степени?
Подсказка 2
Вынесем 2cos(x) за скобки и с помощью формул понижения степени преобразуем левую часть уравнения.
Подсказка 3
После того, как мы понизим все степени до первой, можно будет преобразовать разность косинусов и раскрыть скобки!
Подсказка 4
-4sin(3x)sin(2x) + 2cos(x) = -2(cos(x) - cos(5x)) + 2cos(x). Какой вывод можно сделать из данной цепочки неравенств? Вспоминаем условие!
Подсказка 5
Найдите cos(5x), используя цепочку преобразований и правую часть!
Будем искать решение в виде (на это намекнули в условии задачи). Получаем уравнение
Преобразуем его левую часть:
В итоге получили
Поскольку у первоначального уравнения ровно пять действительных корней (по условию), то, чтобы их предъявить, достаточно взять какие-нибудь пять значений , косинусы которых различны. Например,
Остальные четыре корня имеют вид , где