Тема ДВИ по математике в МГУ

Стереометрия на ДВИ

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела дви по математике в мгу
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#91958

Плоскость π  перпендикулярна ребру SA  правильной треугольной пирамиды ABCS  с вершиной S  и основанием ABC  , делит это ребро в отношении 1:2  (считая от вершины S  ) и проходит через середину ребра SB  . Найдите угол между плоскостью π  и плоскостью основания пирамиды.

Источники: ДВИ - 2024, вариант 241, задача 7 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

Давайте построим сечение MNK (M∈AS, N∈SB, K∈SC) пирамиды SABC плоскостью π. Обозначим AS = 6х и попробуем выразить все отрезки на рисунке через х (для этого можно воспользоваться теоремой косинусов для треугольника △ASB, ведь cos∠ASB мы можем без проблем найти, так как на рисунке есть очень много прямоугольных треугольников)

Подсказка 2

Проведём LN — среднюю линию треугольника △ASB, обозначим за Р середину NK. Какой угол требуется найти в задаче?

Подсказка 3

Конечно, угол ∠MPL! Так как мы уже знаем соотношение практически всех отрезков, мы можем без труда найти значение синуса этого угла)

Показать ответ и решение

Первое решение.

Пусть π  пересекает AS,  BS  и CS  в точках P,  R  и Q  соответственно (то есть π = (PQR )).  Тогда по условию SR = RB  и AP = 2PS.  Пусть M  — середина BC.  Тогда пирамида SABC  симметрична относительно плоскости (SAM ).  Поскольку π  пересекает ребро SB  в середине, то в силу симметрии эта плоскость пересекает CS  тоже в середине, поэтому QC = QS.

PIC

Пусть K  — середина AP.  Тогда PS =P K = AK,  так как AP = 2P S.  Тогда, поскольку SP :PK = SR :RB,  то PR  и KB  параллельны. Аналогично можно доказать, что RQ  и BC  параллельны. Таким образом, π  и (KBC )  — параллельные плоскости, поэтому требуемый в задаче угол равен углу между (KBC )  и (ABC ).

Так как по условию π  и AS  перпендикулярны, то (KBC )  и AS  перпендикулярны, то есть BK  и CK  перпендикулярны AS.  Снова применив соображение симметрии, получаем, что KB = KC,  то есть △KBC  — равнобедренный, и KM  — его высота, поскольку M  является серединой BC.  Так как ABC  — правильный треугольник (по условию SABC  — правильная пирамида), то AM  — тоже высота в треугольнике ABC.  Таким образом, KM  лежит в плоскости (KBC )  и перпендикулярно BC,  а AM  лежит в плоскости ABC  и перпендикулярно BC.  Эти плоскости пересекаются по прямой BC.  Таким образом, нужный угол по определению равен ∠KMA.

Пусть AB = BC = AC = 2a.  Тогда BM  =MC  =a,  так как M  — середина BC.  По теореме Пифагора из треугольника ABM  получаем AM = √3a.  По теореме Пифагора из треугольника KSB  получаем KB2 = 5x2.  С другой стороны, по теореме Пифагора из треугольника AKB  имеем KB2 = 4a2− x2.  Таким образом, 4a2 − x2 = 5x2,  то есть    ∘ --
x =  23a.

Так как KBC  и AS  перпендикулярны, то KM  и AS  перпендикулярны. Из прямоугольного треугольника AKM :

                ∘ --
           x      2a  √2-
sin ∠AMK = √3a-= √33a-= -3-

Таким образом,             √-
∠AMK  = arcsin-23 .

______________________________________________________________________________________________________________________________________________________

Второе решение.

Пусть π  пересекает AS  в точке H,  BS  — в точке M.  Пусть AS = CS =BS = 6x.  Тогда из условия следует, что SH =2x,  AH = 4x,  так как SH :AH = 1:2.  M  — середина SB,  поэтому SM = SB =3x.

PIC

По теореме Менелая для треугольника ASC  и прямой HT :

4x  3x CT-
2x ⋅3x ⋅TA = 1

Таким образом, TA =2CT,  поэтому AC = CT.  Пусть AC = y.  По теореме Менелая для треугольника AHT  и прямой SC :

y  TM   2x
y ⋅MH--⋅6x = 1

Таким образом, TM = 3MH.  Так как AS  по условию является перпендикуляром к плоскости π,  то T H  и AS  перпендикулярны. Тогда по теореме Пифагора из треугольника SMH  получаем      √-
HM =  5x.  То есть       √-
TM = 3 5x.  По теореме Пифагора для треугольника AHT  :

16x2 +80x2 = 4y2

Таким образом,     √-
y = 2 6x.  Пусть O  — основание высоты пирамиды SABC.  Углы между плоскостями равны углам между перпендикулярами к ним, поэтому

∠(π,(ABC )) =∠(SA,OS)

Из прямоугольного треугольника ASO  получаем sin∠ASO = AAOS-.  Так как O  — точка пересечения медиан правильного треугольника ABC,  то      √-    √-
AO = -33 y = 2 2x.  Тогда

               √-    √-
sin∠ASO = AO-= 2-2x = -2-
         AS    6x    3

Таким образом, ∠ASO = arcsin√2.
            3

______________________________________________________________________________________________________________________________________________________

Третье решение.

Пусть искомый угол это φ.  Обозначим пересечение плоскости π  с ребрами SA, SB, SC  точками M, N, K  соответственно. N  — середина ребра SB,  следовательно, K  тоже середина ребра, так как пирамида правильная. По условию NM  ⊥ SA, KM ⊥ SA.  Обозначим длину SA  как 6x,  тогда получаем, что

SM = 2x, AM = 4x, SN = NB = SK =KC  =3x

PIC

В треугольнике MSN :

          2x  2
cos∠MSN  = 3x = 3

Тогда по теореме косинусов для треугольника ASB  получаем

   2    2    2                        2    2          2     2
AB  = AS + SB − 2⋅AS⋅SB ⋅cos∠MSN  = (6x) +(6x) − 2⋅6x⋅6x⋅3 =24x

       √-
AB = 2x 6

Обозначим середину ребра SA  точкой L.  Тогда треугольник LNK  правильный, так как треугольник ABC  правильный, а также плоскость (LNK )  параллельна плоскости основания. LN  — средняя линия в треугольнике ASB,  следовательно, LN =x√6.  Обозначим точкой P  середину NK.  В треугольнике LNK :

     LN √3  3x√2-
LP = --2-- =--2-

так как треугольник LNK  правильный.

Так как плоскость (LNK )  параллельна плоскости основания, то найдем угол между этой плоскости и плоскости π.

MP ⊥ NK,  LP ⊥ NK   =⇒   ∠LPM = φ

Так как L  — середина, то LM  =x.  В прямоугольном треугольнике LP M (MP  ⊥SA )  находим, что

          LM     x    √2
sin∠LPM = -LP = 3x√2-= -3-
                 2

Тогда

               √-
∠LMP = φ =arcsin -2-
                3
Ответ:

arcsin√2
     3

Ошибка.
Попробуйте повторить позже

Задача 2#91981

В основании пирамиды лежит трапеция ABCD, AD∥BC,AD = 2BC  . Сфера радиуса 1 касается плоскости основания пирамиды и плоскостей её боковых граней ADS  и BCS  . Найдите отношение, в котором делит объём пирамиды плоскость ADT  , где T  - точка касания сферы с плоскостью BCS  , если грань ADS  перпендикулярна плоскости основания, а высота пирамиды равна 4.

Источники: ДВИ - 2024, вариант 242, задача 7 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

Так как сфера касается трех граней, сразу обозначим, что она касается плоскости ADS в точке R, а плоскости ABCD в точке P, O — центр сферы. Что можно сказать про точки T, P, R? Хотелось бы нарисовать рисунок как можно аккуратнее, как тогда удобнее всего было бы работать с перпендикулярностью грани и основания и высотой в этой грани?

Показать ответ и решение

Так как плоскость (ADS )  перпендикулярна (ABC ),  высота SH  пирамиды SABCD  лежит в грани ADS.  Без ограничения общности можно считать, что сфера касается плоскости (ADS)  в точке R,  лежащей на высоте SH  (этого можно добиться, если выполнять перенос сферы параллельно плоскости основания пирамиды).

Пусть сфера касается плоскости (ABC )  в точке P.  Докажем, что точки T,  P  и Q  лежат в одной плоскости и эта плоскость содержит SH  . Пусть O  — центр сферы. RH  — перпендикуляр к плоскости (ABC ),  так как это отрезок на высоте пирамиды. P  — точка касания сферы и (ABC ),  поэтому OP  и (ABC)  перпендикулярны. Таким образом, OP  и RH  параллельны, поэтому O,  P,  R,  H  лежат в одной плоскости (тогда и S  лежит в этой плоскости). BC || AD,  так как эти отрезки являются основаниями трапеции ABCD.  Тогда плоскость (SBC)  параллельна прямой AD.  Докажем, что AD ⊥ (SHP).

Мы уже знаем, что SH ⊥ AD.  Теперь заметим, что все три угла ∠ORH,  ∠RHP  и ∠OPH  — прямые, поэтому ORHP  — прямоугольник. Тогда PH  — перпендикуляр к плоскости (ADS),  так как (ADS)  и (ABC)  перпендикулярны. Таким образом, P H ⊥ AD.  Тогда, действительно, AD ⊥ (SHP ).  OT ⊥(SBC )  и AD || (SBC ),  поэтому OT ⊥ AD.  Точка O  лежит в плоскости (SHP ).  Эта плоскость перпендикулярна AD,  при этом OT  — прямая, перпендикулярная AD.  Тогда OT  тоже лежит в плоскости (SHP ).

Ранее мы отмечали, что ORHP  — прямоугольник. Так как OP =OR  — радиусы сферы, то на самом деле этот прямоугольник является квадратом. SH = 4,  тогда SR = SH − RH = 3.  ST =SR = 3  — отрезки касательных. Пусть плоскость (SHP )  пересекает   BC  в точке K.

PIC

Пусть KT =KP = c  (эти отрезки действительно равны, как отрезки касательных). По теореме Пифагора для △SHK  :

        2       2
16+ (c+ 1) =(c+ 3)

Решаем это уравнение и получаем c=2.  Теперь через точку T  проведем прямую NL,  параллельную BC,  причем N ∈ SB  и L ∈SC.  Тогда ANLD  — это сечение пирамиды плоскостью (ADT ).  Действительно, плоскость (ADT )  пересекает (SBC)  по прямой, параллельной (AD),  при этом AD || BC.  Поэтому, действительно, линия пересечения (ADT )  и (SBC )  параллельна BC,  поэтому совпадает с NL.

Теперь по теореме Фалеса для углов BST  и KSC  получаем: SN :NB  =ST :TK = 3:2  и аналогично SL:LC = 3:2.

Продлим AB  и DC  до пересечения в точке Q.

PIC

По условию AD = 2BC,  поэтому точки B  и C  соответственно середины AQ  и DQ.  Пусть F = AN ∩ DL.  Ясно, что F ∈SQ.  Применяем теорему Менелая к △QSC  и прямой FD :

QF-⋅ SL-⋅ CD-= 1
FS  LC  DQ

CD-= 1,
DQ   2  SL-= 3,
LC   2  поэтому QF-= 4.
FS   3  Пусть V  — объем пирамиды QADS.  Пирамида QADS  имеет общую высоту SH  с нашей пирамидой SABCD.  Треугольники QAD  и QBC  подобны с коэффициентом 2,  поэтому SQAD = 4SQBC.  Тогда получаем, что SABCD = 3SQAD,
        4  причем QAD  — основание пирамиды QADS,  если принять S  за ее вершину. По формуле объема пирамиды:

         1             1    3      3 1             3
VSABCD = 3 ⋅SABCD ⋅SH = 3SH ⋅4SQAD = 4(3 ⋅SH ⋅SQAD )= 4V

По теореме о пирамидах с общим трехгранным углом при вершине:

VSAFD   SA  SFSD   SF   3
VSAQD-= SA-⋅SQSD-= SQ-= 7

Таким образом, VSAFD = 37V.  Снова по теореме о пирамидах с общим трехгранным углом при вершине:

VSNLF-= SN-⋅ SL-⋅ SF-= 3⋅ 3⋅ 3 = 27
VSBQC   SB  SC  SQ   5 5 7   175

V    = V − V     = 1V.
SBQC       SABCD   4  Таким образом, V     = 27V.
 SNLF   700  Тогда V     = V     − V    = 273V.
SANLD    SAFD   SNLF   700  SANLD  — одна из частей, на которые плоскость (ADT )  разбивает исходную пирамиду SABCD.  Объем второй части равен                            3    273-   252-
VNLABCD = VSABCD − VSANLD = 4V − 700V = 700V.  Тогда требуемое по условию отношение равно

VNLABCD    252V   12
-VSANLD- = 720073V-= 13
           700
Ответ: 12 : 13

Ошибка.
Попробуйте повторить позже

Задача 3#92118

В основании прямой призмы лежит ромб со стороной 3. Найдите объём призмы, если известно, что существует сфера радиуса 1, касающаяся плоскости нижнего основания, двух противоположных боковых рёбер и всех рёбер верхнего основания.

Источники: ДВИ - 2024, вариант 243, задача 7 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

Построим чертёж! Проведите перпендикуляры из центра сферы к параллельным между собой боковым рёбрам (в точки касания). Что можно сказать о фигуре, образованной диагональю ромба, частями этих рёбер и проведёнными перпендикулярами?

Подсказка 2

Теперь мы знаем диагональ ромба! Это позволяет нам полностью обсчитать ромб, найти его углы/высоту/площадь и всё что нам нужно!

Подсказка 3

Спроецируем радиус сферы, проведённый в точку касания её с ребром верхнего основания, на плоскость основания. Эта проекция — половина высоты ромба.

Подсказка 4

Работа с теоремой Пифагора поможет нам отыскать оставшуюся часть высоты призмы. Осталось подставить числа в формулу и записать ответ.

Показать ответ и решение

Пусть дана призма ABCDA ′B′C′D′,  O  — центр данной сферы, которая касается боковых рёбер BB′ и DD ′ в точках K  и L.

Заметим, что        ′
OK ⊥ BB и        ′
OL ⊥ DD ,  следовательно        ′
KL ⊥ BB .  А раз   ′
BB ⊥ BD  и все четыре точки B,K,L,D  лежат в одной плоскости, то KL ∥KL  и BKLD  — прямоугольник, значит, BD  =KL,  при этом KL = 2  как диаметр данной сферы.

Рассмотрим треугольник ABD  и найдём высоту DH.  По формуле Герона         √-
SABD = 2 2,  тогда

       1
SABD = 2DH ⋅AB

       √-
3DH = 2 2
2

      √ -
DH  = 4-2
       3

Проецируем O  на нижнее основание, обозначим проекцию на Q,  она будет являться серединой BD.  Пусть G  — точка касания сферы с A′B ′,  а E  — её проекция на нижнее основание.

PIC

Раз OG ⊥A ′B′ , то в силу ТТП и свойств проекции QE ⊥ AB.  Тогда QE  — средняя линия в треугольнике BDH,  следовательно             √ -
QE = 1DH = 2--2.
     2       3

Рассмотрим прямоугольную трапецию GOQE,  в ней OG =OQ = 1  и      2√2
QE = -3-.  Пусть GE = h,  тогда по теореме Пифагора

(GE − OQ)2+ QE2 = OG2

(h− 1)2 + 89 = 1

h = 4
    3

Теперь зная это, посчитаем объём призмы

                               -        -
                             4√2  4  16√2
V =SABCD ⋅GE = AB⋅DH ⋅GE = 3⋅ 3  ⋅3 =  3
Ответ:

 16√2
  3

Ошибка.
Попробуйте повторить позже

Задача 4#92263

Дан куб со стороной 1, основаниями ABCD, A′B ′C′D′ и боковыми рёбрами AA ′,BB′,CC′ и DD′ . На рёбрах A′B′,B ′B,BC,CD, DD′,D′A′ отмечены точки K,L,M,N,O,P  coответственно. Найдите отношение, в котором плоскость KMO  делит объём куба, если известно, что

  ′
∠A AK = ∠LAK,∠BAM  = ∠NAM, ∠DAO = ∠PAO

и что

 ′                         ′  5
A K+ LB = BM + ND = DO +PA  = 4.
Подсказки к задаче

Подсказка 1

В условии нам дана сумма некоторых пар отрезков, быть может, тогда обозначим A’K за x и посчитаем остальные отрезки в грани ABB’A’? Также обратим внимание на то, что ребра в этой грани параллельны, так что можно использовать и подобие!

Подсказка 2

BL = 5/4 - x, LB’ = x - 1/4, а если провести AL до пересечения с A’B’ в точке T, то несложно выразить и B’T. А в составе какого отрезка лежит B’T? Давайте выразим его через больший треугольник!

Подсказка 3

B’T = A’T - 1, а A’T можно выразить через тангенс угла A! Теперь мы умеем выражать B’T двумя способами, чему тогда равен х?

Подсказка 4

x = 1/2! Супер, теперь мы знаем, что K — середина A’B’. Но ведь это верно не только для точки K…

Подсказка 5

Аналогично M — середина BC, O — середина DD’! Теперь мы видим, что сечение у нас достаточно красивое и даже симметричное ;) осталось понять, относительно чего…

Показать ответ и решение

Рассмотрим грань AA ′B ′B  . Пусть A ′K = x,  тогда BL = 5− x,
     4  LB′ = x− 1.
        4

PIC

Продлим до пересечения лучи AL  и A′K,  точку пересечения назовём T  и выразим B′T  , используя подобие треугольников ALB  и TLB ′ :

B′T = x-− 14-= 4x−-1.
     54 − x  5− 4x

Выразим теперь  ′
B T  вторым способом: через треугольник   ′
AA T  и тангенс ∠A :

          A′K
tg∠A′AK = AA′-=x.

Используя формулу тангенса двойного угла, получаем, что

A′T = tg∠A ′AT = -2x-2.
              1− x

Отсюда

 ′    ′      2x−-1+-x2-  4x−-1
B T = A T − 1= 1− x2  = 5− 4x .

Отсюда можно найти x  : перемножая пропорцию и приводя подобные, получим квадратное уравнение   2
4x − 10x+ 4= 0  , которое имеет решения x =2  и    1
x =2.  По построению x  не может превосходить единицу, поэтому    1
x= 2,  то есть K  — середина  ′ ′
A B .

Аналогично получаем, что M  — середина BC,  и O  — середина DD ′.

PIC

Заметим, что через K,M,O  проходит плоскость, которая высекает из данного куба шестиугольник и пересекает ещё три ребра в серединах: рёбра A ′D ′,BB′ и CD  . Такая плоскость часто встречается в задачах: явно построить сечение можно классическим способом, параллельными переносами отрезков. А если уже встречались с таким построением, можно показать, что все 6 точек действительно лежат в одной плоскости, используя параллельность диагоналям граней куба. Поскольку через три точки K,M,O  можно провести только одну плоскость, этот шестиугольник и будет сечением куба плоскостью KMO.

Сечение центрально симметрично относительно центра куба I.  Середины отрезков CD  и B ′A′ симметричны относительно центра, как и середины отрезков A′D′ и BC,  DD ′ и B′B  . Таким образом, имеем центральную симметрию всего построения относительно центра куба, следовательно, плоскость делит куб на две равные фигуры.

Ответ: 1 : 1

Ошибка.
Попробуйте повторить позже

Задача 5#92348

Все рёбра прямой треугольной призмы ABCA ′B ′C′ с основанием ABC  и боковыми ребрами AA ′,  BB ′,  CC ′ равны. Найдите отношение, в котором делит объем этой призмы плоскость, проходящая через вершину  ′
C и через середины ребер AB,     ′
AA .

Подсказки к задаче

Подсказка 1

Пусть M и N — середины AA’ и BB’ соответственно, секущая плоскость пересекает CB в точке K, а T — пересечение KN и TC’. Нам было бы очень полезно узнать, в каком соотношении K делит CB. Давайте тогда попробуем записать какие-нибудь подобия и отношения отрезков!

Показать ответ и решение

Пусть M  и N  — середины AA′ и BB′ соответственно. Пусть секущая плоскость пересекает отрезок BC  в точке K  и   ′
C M ∩ KN = T  (тогда наше сечение — это   ′
KC MN  ). Ясно, что T  лежит на прямой AC.  Пусть AH  — высота треугольника ABC.  Пусть    ′
TH  ⊥ BC,  причем  ′
H лежит на прямой BC.

PIC

CC′ и AM  параллельны, причем AM = 12AA′ = 12CC ′,  тогда треугольники CC ′T  и AMT  подобны с коэффициентом 2.  Тогда CT = 2AT.  Треугольники CAH  и TCH ′ подобны с коэффициентом 2,  так как AH || TH ′ и TC = 2AC.  Тогда TH ′ =2AH.  По теореме Менелая для треугольника ABC  и прямой KN  получаем

CK- ⋅ BN-⋅ AT-= 1
KB   NA  CT

Тогда получаем CK-= 2,
KB   1  следовательно, KB-= 1.
BC   3  Пусть V =V     ′′ ′.
    ABCA B C  По формуле объема

          ′  1          ′
V =SABCBB  = 2AH ⋅BC ⋅BB

        1   ′       1   ′         1
VABCC′ =3CC  ⋅SABC = 6CC ⋅AH ⋅BC  =3V

VCC′KT = VCC-′KT-⋅ V-= VCC′KT-V-= 4 V
          V∕3   3   VC′CBA 3  9

V     = SANT-⋅ MA ⋅ V-= VAN-⋅AT-⋅sin∠NAT
 MNTA   SABC  AA′  3   6CB ⋅CA ⋅sin∠CAB

Так как                 ∘
∠CAB + ∠NAT = 180,  то sin∠CAB = sin∠NAT.  Тогда         -V
VMNTA = 12.

Выразим объем фигуры    ′
MC  ANKC  — одной из частей, на которые разделила призму секущая плоскость:

                           4    1    13
VMC ′ANKC  =VCC′KT − VMNTA = 9V − 12V =36V

Тогда VBKNA ′B′C′ = V − VMC ′ANKC = 2336V.  Тогда получаем

            23
VBKNA′B′C-′= 36V-= 23-
VMC ′ANKC    1336V   13
Ответ: 13 : 23

Ошибка.
Попробуйте повторить позже

Задача 6#92367

Расстояние от середины высоты правильной четырёхугольной пирамиды до боковой грани равно √2-  , а до бокового ребра — √3  . Найдите объём пирамиды.

Показать ответ и решение

Пусть нам дана правильная четырехугольная пирамида SABCD  с основанием ABCD.  Пусть O  — основание высоты этой пирамиды. Заметим, что расстояние от O  до плоскости BSC  равно удвоенному расстоянию от середины высоты до этой плоскости. Аналогично с расстоянием до бокового ребра AS.  Пусть OQ  — перпендикуляр к AS,  а OP  — перпендикуляр к апофеме SH  плоскости BSC.

PIC

Так как H  — середина BC,  то BC ⊥OH.  А также поскольку SO  — высота, то BC ⊥ OS.  Тогда BC  перпендикулярна SOH,  в частности, перпендикулярна и к OP.  Тогда получается, что OP  перпендикулярна к SH,BC,  а значит, OP = 2√2  как расстояние от основания высоты до боковой грани.

Положим, что OH = x,  тогда AO = x√2  так как в квадрате диагональ в √2  раз длиннее стороны. Теперь запишем отношения площадей прямоугольных треугольников ASO  и SOH :

                                -
-SASO-  -AO  √ -  AS-⋅OQ-  AS-⋅2√-3
SSOH = OH  =  2= SH ⋅OP = SH ⋅2√ 2

AS    2
SH-= √3-

Теперь пусть AS =2a,  тогда      √-
SH =a 3.  А из прямоугольного треугольника SHC  по теореме Пифагора HC = a= OH = x.  Теперь же из треугольника SOH  по теореме Пифагора:

OS = x√2

Тогда по формуле высоты для этого же треугольника:

      √ -
2√2 = x-√2⋅x
       x 3

    √ -
x = 2 3

Наконец, по формуле объема пирамиды:

VSABCD = 1x⋅4x2 = 32√6.
         3
Ответ:

 32√6

Ошибка.
Попробуйте повторить позже

Задача 7#89780

Ребро основания правильной треугольной пирамиды равно √6  , высота пирамиды равна √7-  . Плоскость π  перпендикулярна одному из рёбер пирамиды и делит его в отношении 1:2  , считая от вершины. Найдите отношение, в котором плоскость π  делит объём пирамиды.

Источники: ДВИ - 2023, вариант 237, задача 7 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

Пусть SABC — данная пирамида, плоскость π будем строить перпендикулярно ребру SA. Что можно сказать о рёбрах SA и BC? Какой вывод из этого можно сделать относительно π и ВС?

Подсказка 2

π || BC, что тогда можно сказать о пересечении плоскостей π и (SBC)? Достройте сечение, пользуясь тем, что SA ⊥ π, а значит и любой прямой, находящейся в этой плоскости

Подсказка 3

Чтобы найти отношение объёмов исходной пирамиды и пирамиды, отсечённой плоскостью π, удобно взять за основание треугольники △BSC и треугольник, отсекаемый плоскостью π при пересечении с гранью SBC.

Показать ответ и решение

Обозначим через A,B,C,S  вершины пирамиды, так что ABC  — ее основание, а плоскость π  перпендикулярна ребру SA  .

Поскольку π ⊥ SA  и BC ⊥ SA  , имеем π ∥ BC  . Стало быть, π  пересекает плоскость BCS  по прямой, параллельной BC  , и делит ребра SB  и SC  (или их продолжения) в одинаковом отношении. Найдем это отношение.

Обозначим через H  основание высоты пирамиды и через M  — середину ребра BC  . Тогда

      AB√3-  3√-
AM  = --2--= 2 2;

AH = 2AM = √2.
     3

Пусть K  — точка пересечения π  и SA,L  — точка пересечения π  с прямой AM, N  — точка пересечения прямых LK  и SM  . Тогда AK = 2KS  , причем ∠AKL  =90∘.

PIC

Из подобия треугольников ALK  и ASH  получаем:

             2√---2----2
√---A2H----2 = 3-AH-+-SH-,
  AH + SH        AL

откуда

     2
AL = 3(2√+-7)-=3√2-= 2AM.
        2

Итак, M  — середина AL  . Обозначим через P  середину AK  . Тогда LK∥MP  , откуда SN =  NM  , ибо SK = KP  .

Таким образом, плоскость π  проходит через середины ребер SB  и SC  . Следовательно, π  отсекает от пирамиды ABCS  пирамиду, объем которой равен

1 1 1         VABCS
3 ⋅2 ⋅2 ⋅VABCS =-12-

То есть π  делит объем исходной пирамиды в отношении 1 :11.

Ответ: 1 : 11

Ошибка.
Попробуйте повторить позже

Задача 8#90508

Дан куб с ребром 1, нижним основанием ABCD  и боковыми ребрами AA ,BB ,CC ,DD
  1   1   1   1  . На ребрах A D ,BB ,CC ,AD
 1  1   1   1  отмечены соответственно точки K,L,M,N  , так что A1K =KD1  , BL :LB1 = 7:1  , CM :MC1 = DN :NA = 4:3  . Найдите площадь сечения тетраэдра KLMN  , параллельного ребрам KL  и MN  , имеющего форму ромба.

Источники: ДВИ - 2023, вариант 236, задача 7 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

Начнём с хорошего чертежа! Возможно, будет удобно отдельно вынести тетраэдр KLMN, чтобы удобнее было работать с сечением. В каком случае сечение тетраэдра будет ромбом? А что нам нужно, чтобы найти его площадь?

Подсказка 2

Будем вычислять стороны ромба и угол между ними. Заметим также, что этот угол равен углу между рёбрами KL и MN тетраэдра. Итак, пусть вершина ромба делит ребро KN в отношении х/у, что можно сказать о том, в каких отношениях вершины ромба делят другие рёбра тетраэдра? Параллельность нам поможет это установить!

Подсказка 3

При помощи теоремы Пифагора можно вычислить любое ребро тетраэдра. А подобие треугольников поможет нам после этого отыскать сторону ромба. Но как же найти угол?

Подсказка 4

KL и MN, а также другие пары параллельных им прямых, не выглядят удобными для построения угла между прямыми напрямую, однако куб — очень хорошая фигура для работы с декартовой системой координат! Введите координаты и при помощи работы с векторами определите искомый угол. Остаётся лишь подставить найденные значения в формулу площади ромба и задача убита!

Показать ответ и решение

Пусть c  — длина стороны ромба, α  — его меньший угол. Тогда искомая площадь равна c2sinα,  причем угол α  равен углу между прямыми KL  и MN,  т.к. сечение параллельно ребрам KL  и MN.

PIC

Найдем c.  Пусть сечение пересекает стороны KN,LN,LM, KM  в точках H,I,J,O  соответственно. Тогда HI ∥ KL  и IJ ∥NM.  Пусть KH  и HN  имеют длину x  и y  соответственно. По теореме о пропорциональных отрезках для параллельных прямых HI  и   KL  понимаем, что

LI-= KH-= x
IN   HN   y

Из подобия треугольников NHI  и NKL  и треугольников LIJ  и LNM  получаем

   -x--      -y--
c= x+ yNM  = x+yKL

Отсюда      KL
x= y⋅NM-,  то есть

       1
c= -1-+--1-
   KL   NM

По теореме Пифагора

     ∘ ---1---1- 9        ∘ ---16---16  9
KL  =  1+ 4 + 64 = 8, NM =  1+ 49-+ 49 = 7,

Отсюда    3
c= 5.

Найдем угол α  — угол между KL  и MN.  Он равен углу между направляющими для этих прямых векторами (    )
 12,1,18 и (       )
− 47,1,− 47 .  Их скалярное произведение равно    (    )
1−  12 + 18 ⋅ 47 = 914.  Следовательно,

cosα= -9 ⋅ 8⋅ 7 = 4
      14  9 9  9

Соответственно,

      √--
sinα = -65
       9

Значит, искомая площадь равна

( 3)2 √65   √13
  5  ⋅ 9  = 5√5-
Ответ:

 √13
5√5-

Ошибка.
Попробуйте повторить позже

Задача 9#90509

Найдите объём правильной четырёхугольной пирамиды со стороной основания равной 1, если известно, что плоские углы при вершине равны углам наклона боковых рёбер к плоскости основания.

Источники: ДВИ - 2023, вариант 233, задача 7 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

Пусть пирамида — SABCD и её высота — SН. Плоский угол при вершине назовём α. SA = x. Отметьте равные углы и давайте двумя способами найдём cos(α): по теореме косинусов из △SAD и как отношение АН/SA

Подсказка 2

Решение квадратного уравнения поможет нам вычислить х. Какой из корней получился посторонним?

Подсказка 3

ОТТ поможет нам найти sin(α) и затем, с его помощью, высоту. Осталось лишь внимательно поработать с некрасивыми числами и записать ответ!

Показать ответ и решение

Пусть SABCD  — данная правильная четырехугольная пирамида с вершиной S  и высотой SH, AB = 1.  Обозначим ∠BSC = ∠SCH = ∠α.

PIC

Из прямоугольного треугольника CSH  находим, что

                1√-
SC = --CH----= --2-= √-1---
     cos∠SCH    cosα    2cosα

Пусть M  — середина ребра BC.  Из прямоугольного треугольника CSM  находим, что

     --CM----  --12---  --1----
SC = sin∠CSM  = sin(α2) = 2sin(α2)

Значит,

                         ( )
√-1---= --1-α  =⇒   √2sin  α-= cosα
 2cosα   2sin 2             2

    2(α)    2
2 sin  2 = cosα

          2          2
1− cosα =cos α  =⇒  cos α+ cosα− 1= 0  =⇒

      √5−-1
cosα =   2

Тогда

     ∘--------  ∘ ---√----- ∘ ---√--
tg α=   -1---− 1=  3+--5− 1=   1+--5
       cos2α         2           2

              √-  ∘---√--   ∘ -----
SH = CH ⋅tgα= -2-⋅ 1-+--5= 1  1+√ 5
               2      2    2

Следовательно,

                           ∘ -----  ∘ --√--
VSABCD = 1SABCD ⋅SH = 1⋅1⋅ 1 1+√5-= --1+--5
         3            3   2            6
Ответ:

 √1+-√5
   6

Ошибка.
Попробуйте повторить позже

Задача 10#90510

Пересечение плоскости и правильной треугольной пирамиды является квадратом со стороной 1. Найдите длину ребра основания пирамиды, если известно, что двугранный угол между плоскостью боковой грани и плоскостью основания равен     √1
arccos 3.

Источники: ДВИ - 2023, вариант 238, задача 7 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

Пусть исходная пирамида — SABC, SA = b. AB = a. Знание о том, что пирамида правильная, помогает нам понять, куда упадёт высота этой пирамиды, а значит — построить косинус двугранного угла. В каком случае сечение будет квадратом, как связаны его стороны с рёбрами пирамиды?

Подсказка 2

Выразите через а и b все отрезки, необходимые для нахождения косинуса, после этого можно будет установить связь между a и b. А как нам определить отношение стороны квадрата к ребру а?

Подсказка 3

Пусть вершина квадрата-сечения делит ребро АВ в отношении m/n, в каком отношении делится ребро SB этим же сечением? При помощи подобия треугольников и известного отношения a/b установите численно отношение m/n. После этого, подстановкой известных отношений, вычислите а.

Показать ответ и решение

Поскольку сечение — четырёхугольник, плоскость пересекает все грани. Обозначим вершшины основания через A,B,C  и вершину пирамиды через D  . Тогда можно считать, что секущая плоскость пересекает рёбра AB,BD, DC,CA  в точках K,L,M,N  соответственно. Поскольку KL∥MN  , прямая KL  параллельна всей плоскости ADC  . Стало быть, MN  ∥KL ∥AD  . Аналогично, KN ∥BC∥LM  . Положим a =AB,b =AD  .

PIC

Тогда косинус двугранного угла при основании равен

∘-2a√3---= ∘-----1------,
  b2− a2     (  (b)2  )
      4    3  4 a  − 1

что по условию равно 1√3  , откуда ba = √12  . Из того, что KL∥AD,LM ∥BC  получаем:

-1= LM-= DL- = DB-− LB-= 1− LB-= 1− KL-= 1− 1.
a   BC   DB      DB        DB      AD      b

Таким образом,

      √ -
1 =1− --2,
a      a

то есть       √-
a =1+  2  .

Ответ:

 a =1+ √2

Ошибка.
Попробуйте повторить позже

Задача 11#64684

Высота правильной треугольной призмы ABCA ′B′C′ с основанием ABC  и боковыми рёбрами AA ′,BB ′,CC′ равна 1.  Найдите длину ребра основания, если известно, что   ′    ′
AB ⊥ BC .

Источники: ДВИ - 2022, вариант 223, задача 7 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

Как мы можем применить данную нам перпендикулярность? Кажется, будет удобно построить из точки B' прямую B'B₁, параллельную BC' и взглянуть, на полученную конструкцию. Обозначьте неизвестную сторону основания какой-нибудь переменной и попробуйте выразить всё что тут можно!

Подсказка 2

В основании правильный треугольник, значит у нас есть угол в 60°. Имея в треугольнике две стороны и угол мы сумеем выразить третью сторону: отрезок, соединяющий А с точкой пересечения B'B₁ и плоскости основания. Эту же сторону мы можем выразить при помощи т. Пифагора.

Подсказка 3

Осталось только решить квадратное уравнение, отсечь лишний корень (сторона ведь не может быть отрицательной!) и задача повержена!

Показать ответ и решение

PIC

Достроим основания призмы ABC, A′B ′C ′ до параллелограммов, получим ABCD,A ′B′C′D′ . Получится параллелепипед, в котором AB ∥DC, AB =CD  и AB ′ ∥DC′,AB′ = DC′ , отсюда DC′ ⊥ BC ′ . Кроме того, BC′ = DC′ (призма правильная, можно воспользоваться симметрией. Отсюда △BC ′D  прямоугольный и равнобедренный. Если AC ∩ BD = M  , то C ′M  будет высотой этого треугольника, если дополнительно AB = a  , то                 √-
C′M  =DM  =BM  = -32a,CM  = AM = a2  (используем свойства правильного треугольника). Из условия CC ′ =1  , применяя теорему Пифагора:                                         -
C′C2+ CM2 = C′M2 ⇐ ⇒ 1+ a2∕4= 3a2∕4 ⇐⇒ a= √2  .

Ответ:

 √2

Ошибка.
Попробуйте повторить позже

Задача 12#64685

Дана правильная треугольная пирамида ABCS  с основанием ABC  и вершиной S.  Плоскость π  перпендикулярна ребру AS  и пересекает рёбра AS,BS  в точках D,E  соответственно. Известно, что SD = AD  и SE = 2BE.  Найдите косинус угла между ребром AS  и плоскостью основания ABC.

Источники: ДВИ - 2022, вариант 225, задача 7 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

Пирамида правильная, поэтому мы чётко знаем куда падает её высота и искомый косинус будет легко выражаться, как только мы узнаем отношение её бокового ребра к ребру основания. Плоскость π перпендикулярна AS. Что в таком случае можно сказать о прямой DE пересечения этой плоскости с плоскостью (SAB)?

Подсказка 2

Итак, DE ⊥ AS. Тогда мы можем, зная положения точек D и E выразить косинус угла при вершине S. Рассмотрите теперь равнобедренный треугольник-грань △ASB: теорема косинусов поможет нам связать его боковые стороны со стороной основания.

Подсказка 3

Пирамида правильная, значит её высота падает в центр основания. Воспользуйтесь свойствами правильного треугольника и найденным в предыдущем пункте соотношением, чтобы выразить искомый косинус.

Показать ответ и решение

PIC

Пусть a  — длина ребра основания и b  — длина бокового ребра. В прямоугольном треугольнике SDE  имеем SD = 12b  и SE = 23b  . Стало быть, cos∠ASB = 34  . Применяя теорему косинусов к треугольнику ASB  , получаем, что a2 =2b2− 2b2⋅ 34  , откуда     √-
b= a 2  . Пусть O  — центр основания. Тогда в прямоугольном треугольнике ASO  имеем         √ -
AS = b=a  2  и       √-
AO =a∕ 3  . Стало быть,                   √-
cos∠SAO = AO∕AS =1∕ 6  .

Ответ:

√1-
  6

Ошибка.
Попробуйте повторить позже

Задача 13#64686

Дан куб ABCDA ′B′C′D ′.  Через середины его ребер AA′,C′D ′ и через центр грани BCC ′B′ проведена плоскость, пересекающая диагональ    ′
DB куба в точке O  . Найдите отношение DO  :   ′
OB .

Источники: Вместо ЕГЭ - 2022, вариант ЕМ222, задача 7 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

Построение этого сечения не выглядит тривиальной задачей. Разберёмся для начала, какие точки этой плоскости нам нужны, чтобы отыскать искомое соотношение. Удобно будет работать с пересечением этой плоскости (назовем ее π) и диагональной (BDD'). Значит нам точно понадобится пересечение π c рёбрами BB' и DD'.

Подсказка 2

Можно заметить, что середина ребра C'D' и центр грани BCC'B' лежат в плоскости диагонального сечения (ABC'). Рассмотрите эту плоскость и поработайте с подобными треугольниками, чтобы определить точку пересечения плоскости π с прямой АВ — зная её, мы сможем посчитать и положение точки пересечения π с ребром BB'.

Подсказка 3

Определить точку пересечения π и DD' тоже не получится в один шаг: удобно это сделать сначала рассматривая всё ту же плоскость (ABC') и прямую AD' в ней. А потом можно будет высчитать и положение точки на DD'.

Подсказка 4

Осталось рассмотреть плоскость (BDD') и имеющуюся у нас теперь прямую её пересечения с π. Поработайте с подобными треугольниками, чтобы отыскать то самое соотношение DO:OB'

Показать ответ и решение

PIC

Обозначим середины ребер AA′,C′D ′ и центр грани BCC ′B′ через F,G,H  , соответственно. Обозначим также через π  плоскость FGH  .

Найдем точку Q  пересечения плоскости π  и прямой BB′ . Точки G,H,A,B  лежат в плоскости ABC ′ , следовательно прямые  GH  и AB  пересекаются. Пусть P  - точка их пересечения. Тогда BP = C′G= 12AB  , поскольку треугольники HC′G  и HBP  равны. Точки P  и F  принадлежат π  , следовательно, прямая FP  есть прямая пересечения плоскости ABB ′ с π  . То есть Q  лежит на отрезке BB ′ . Из подобия треугольников APF  и BPQ  следует, что BQ = 13AF = 16BB ′ . Следовательно, QB ′ = 56BB′ .

Найдем теперь точку S  пересечения плоскости π  и прямой DD ′ . Прямая GH  лежит в плоскости ABC ′ , равно как и прямая  AD′ . Обозначим через R  точку пересечения этих прямых. Из подобия треугольников RAP  и RD ′G  следует, что RD ′ = 13RA  . Точки R  и     F  принадлежат π  , следовательно, прямая F R  есть прямая пересечения плоскости ADD ′ с π  . То есть S  лежит на продолжении отрезка DD ′ за точку D ′ . Из подобия треугольников ARF  и D′RS  следует, что D′S = 1AF = 1DD ′
     3     6 . Следовательно, SD = 7DD ′
     6 .

Прямая SQ  есть прямая пересечения плоскости DBB ′ с π  , то есть она проходит через O  . Треугольники SDO  и QB′O  подобны с коэффициентом подобия 7
5  . Следовательно, DO :OB′ =  7:5  .

Ответ:

 7
5

Ошибка.
Попробуйте повторить позже

Задача 14#90137

Объём треугольной призмы ABCA ′B′C′ с основанием ABC  и боковыми рёбрами AA′,BB ′ , CC ′ равен 72. Найдите объём тетраэдра DEF G  , где D  — центр грани     ′ ′
ABB  A,E  — точка пересечения медиан треугольника  ′ ′ ′
A BC ,F  — середина ребра AC  и G  — середина ребра BC.

Источники: ДВИ - 2022, вариант 221, задача 4 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

Лежащих в одной или хотя бы в параллельных плоскостях, оснований у призмы и тетраэдра не видно. Значит попробуем достроить удобную для вычисления фигуру, с помощью которой можно найти искомый объём через отношение.

Подсказка 2

Продлим ED до пересечения с плоскостью АВС, назовём I полученную точку. Как связаны объёмы тетраэдров IEFG и DEFG?

Подсказка 3

Связать объём тетраэдра IEFG с объёмом призмы можно взяв за основание тетраэдра △IFG: как его сторона FG и высота к этой стороне связаны с высотой и сторонами △АВС? Осталось аккуратно записать все найденные отношения и мы получим ответ!

Показать ответ и решение

Пусть C′H  и CJ  — медианы верхней и нижней грани, тогда D  лежит на HJ  — в центре средней линии параллелограмма. Отсюда следует, что при отражении E  относительно D  мы попадём на CJ  — в точку I  , то есть VDEFG =VEFGI∕2  .

PIC

Также в силу симметрии JI = HE = EC∕2  (E  — точка пересечения медиан), тогда CI = 2⋅EC = 4∕3 ⋅CJ  , однако заметим, что   FG  делит CJ  пополам, то есть делит CI  в отношении 3 :5  от вершины C  , откуда

SIFG = 5∕3⋅SCFG = 5∕12 ⋅SABC,

при этом высота совпадает с высотой призмы, откуда

VDEFG = VEFGI∕2= 5∕24⋅1∕3⋅SABC ⋅h =5,

где h  — та самая высота.

Ответ: 5

Ошибка.
Попробуйте повторить позже

Задача 15#63815

Дан тетраэдр ABCD  . Известно, что центр сферы, описанной около этого тетраэдра, лежит на AB  , что плоскости ABC  и ABD  перпендикулярны и что AD =DC = CB  . Найдите угол между прямыми AD  и CB.

Источники: ДВИ - 2021, вариант 214, задача 7 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

Пусть К — центр описанной сферы. Отметьте равные отрезки-радиусы сферы. Какой вывод можно сделать, смотря на △ADB и его медиану, равную половине стороны? Какой вывод можно сделать о △АВС?

Подсказка 2

Итак, перед нами два прямоугольных треугольника с общей гипотенузой и равными катетами, значит они сами...? Проведите высоту DH в △ADB, что можно сказать об отрезке СН, пользуясь перпендикулярностью плоскостей?

Подсказка 3

Из равенства треугольников можно вывести, что ВН = АН, то есть Н совпадает с К, значит △ADB и △AСB не только прямоугольные, но и...?

Подсказка 4

Отметьте L и M — середины рёбер BD и CD соответственно. Что можно сказать о связи LM и BC? А о LK и AD? Осталось внимательно рассмотреть △MLK и записать ответ!

Показать ответ и решение

Сразу отметим, что, поскольку центр сферы, описанной около тетраэдра, лежит на AB  , углы ACB  и ADB  - прямые. Далее, опустим перпендикуляры CK  и CL  на AB  и BD  соответственно. Тогда DL = LB  , ибо DC = CB  , следовательно, KL − серединный перпендикуляр к BD  в плоскости ABD  и, поскольку          ∘
∠ADB  = 90 , точка K  является серединой AB  . Значит, AC =BC  . Аналогично, AD = BD.

Итак, AC = BC = AD =BD  =CD, AB ⊥CK, AB ⊥DK, AK = BK = CK =DK  . Пусть E − точка, симметричная точке C  относительно K  . Тогда AK ⊥ EK ⊥ DK  и AK = EK =DK  . Следовательно, треугольник ADE − равносторонний. При этом AE ∥CB  . Стало быть, искомый угол равен углу EAD  и равен  ∘
60.

Ответ:

 60∘

Ошибка.
Попробуйте повторить позже

Задача 16#63816

Дан параллелепипед ABCDA  ′B′C′D′ с основаниями ABCD, A ′B′C′D′ и боковыми рёбрами AA ′,BB′,CC′,DD ′ . Все рёбра параллелепипеда равны. Плоские углы при вершине B  также равны. Известно, что центр сферы, описанной около тетраэдра    ′  ′
AB CD , лежит в плоскости   ′
AB C  . Радиус этой сферы равен 2. Найдите длину ребра параллелепипеда.

Источники: ДВИ - 2021, вариант 216, задача 7 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

В вершине В сходятся 3 равных угла, что можно сказать об отрезках-диагоналях граней, лежащих напротив этой вершины? (Строго обосновать этот факт можно через треугольники, равные по 2-м сторонам и углу между ними!)

Подсказка 2

В какой ещё из вершин параллелепипеда сходятся 3 равных угла? Какой вывод можно сделать об отрезках-диагоналях граней, исходящих из этой же вершины?

Подсказка 3

Каким свойством в таком случае обладает тетраэдр D'AB'C: у него равны боковые рёбра и в основании лежит правильный треугольник? Таким образом мы можем вычислить все его стороны!

Подсказка 4

Восстановите длину стороны ромбов-граней по найденным диагоналям и можно записывать ответ!

Показать ответ и решение

Грани параллелепипеда являются ромбами. Поскольку плоские углы при вершине B  равны, равны также и плоские углы при вершине   ′
D . Стало быть,   ′   ′ ′     ′
AD = B D = CD как равные диагонали ромбов и, по той же причине,    ′   ′
AB  = BC = AC  . Таким образом, центр сферы, описанной около тетраэдра   ′  ′
AB CD , является центром окружности, описанной около правильного треугольника   ′
AB C  , а также является основанием высоты тетраэдра, опущенной из вершины  ′
D . Отсюда получаем    ′  √ -   ′  √ -
AB  =2  3,AD  =2  2  . Итак, диагонали ромба равны  √ -
2  3  и  √ -
2  2  , значит, его сторона равна √ -
  5.

Ответ:

 √5

Ошибка.
Попробуйте повторить позже

Задача 17#63818

Вписанная в треугольную пирамиду ABCD  сфера касается граней BCD, ACD,ABD  и ABC  в точках A ,B ,C
 1  1 1  и D
  1  соответственно. Известно, что D1  является точкой пересечения высот треугольника ABC  , что плоскости ABC  и A1B1C1  параллельны и что радиус окружности, описанной около треугольника ABC  в четыре раза больше радиуса окружности, описанной около треугольника A1B1C1  . Найдите отношение, в котором сфера делит отрезок DD1  , считая от вершины D.

Источники: ДВИ - 2021, вариант 213, задача 7 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

В задаче фигурирует ортоцентр, это явно неспроста. Пусть А2, B2, C2 - вершины ортотреугольника и О - центр сферы. Что можно заметить?

Подсказка 2

Представляют интерес четырехугольники OA1A2D1, OB1B2D1, OC1C2D1. На какие фигуры их можно разбить?

Подсказка 3

Они разбиваются на равные прямоугольные треугольники! Можем поотмечать равные углы и затем отметить равные отрезки.

Подсказка 4

В итоге имеем, что D1 - точка пересечения биссектрис АВС. Что тогда можем сказать?

Подсказка 5

ABC - правильный треугольник! (так как его ортоцентр совпал с инцентром) Тогда мы можем сказать какая прямая является высотой пирамиды.

Подсказка 6

Остается провести радиусы окружностей из условия и в вспомогательной плоскости поработать с нашей конструкцией.

Показать ответ и решение

Пусть O  — центр сферы и пусть A ,B ,C
  2 2  2  — основания высот треугольника ABC  , опущенных из вершин A,B,C  соответственно.

PIC

Рассмотрим четырёхугольники OA1A2D1  , OB1B2D1,OC1C2D1  . Каждый из них состоит из двух равных прямоугольных треугольников. При этом катеты OD1,OA1,OB1, OC1  равны.

Из равенства расстояний от A1,B1,C1  до плоскости ABC  следует, что равны углы D1OA1,D1OB1,D1OC1  , а стало быть, равны и углы D1A2A1  , D1B2B1,D1C2C1  . Значит, равны отрезки D1A2,D1B2,D1C2  , то есть D1  является точкой пересечения биссектрис треугольника ABC  . При этом D1  это ортоцентр ABC  . Стало быть, треугольник ABC  правильный. Поскольку углы D1A2A1,D1B2B1,D1C2C1  равны, DD1  — высота пирамиды. Опустим из A1  перпендикуляр A1D2  на DD1  . Тогда радиус окружности, описанной около треугольника A1B1C1  равен A1D2  . Радиус же окружности, описанной около треугольника ABC  равен AD1  . Получаем, что A2D1 = 1AD1 = 1 ⋅4A1D2 = 2A1D2
       2     2  . Отсюда видим, что ∠D1A2A1 = 60∘ . Стало быть, DD1 = √3⋅A2D1 = √3⋅√3⋅OD1 = 3OD1  . Получаем, что искомое отношение равно (DD1 − 2OD1 ):2OD1 = 1:2.

Ответ:

 1 :2

Ошибка.
Попробуйте повторить позже

Задача 18#63819

Сфера касается всех рёбер тетраэдра ABCD  . Известно, что произведения длин скрещивающихся рёбер равны. Известно также, что AB = 3,BC = 1  . Найдите AC.

Источники: ДВИ - 2021, вариант 215, задача 7 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

Подумаем, как можно применить условие о том, что сфера касается всех рёбер тетраэдра? Более всего с длинами рёбер тут связывается свойство касательных: отрезки касательных к сфере, проведенных из одной точки, равны! Обозначьте одной буквой все равные отрезки проведённые из каждой из вершин и при помощи этих букв запишите равенство произведений длин скрещивающихся рёбер. ---

Подсказка 2

Поработайте теперь с нашим двойным равенством: рассмотрите две пары уравнений и попробуйте их преобразовать. Какие интересности связанные с отрезками касательных из разных вершин можно заметить?

Подсказка 3

Если сделать всё аккуратно, то получится несколько вариантов: равны либо отрезки касательных проведённые из вершин А и С, либо проведённые из вершин В и D. Рассмотрите оба случая, не выходит ли в одном из них противоречий с условием задачи? (Не зря же нам даны AB и BC). Аналогично рассмотрите вторую пару вершин, отрезки касательных из которых равны. Останется лишь внимательная арифметика и АС откроется нам!

Показать ответ и решение

Расстояния от вершины A  до точек касания сферы с рёбрами AB,AC,AD  равны. Обозначим это расстояние a  . Соответствующие расстояния от вершин B,C,D  обозначим b,c  , d  соответственно. По условию (a+ b)(c+ d)=(a+ c)(b+d)= (a+ d)(b+c)  , что равносильно после раскрытия скобок системе

(a− c)(b− d)= 0 и  (a − b)(c− d)= 0.

Если a= c  , то AB =BC  , а это не так. Значит, b= d  . Тогда либо a= b  , либо c =b  . Если a =b  , то AC = BC = 1  , что противоречит неравенству треугольника. Значит, c=b  и, стало быть, AC =AB = 3.

Замечание.

Тетраэдр, у которого произведения длин скрещивающихся рёбер равны, называется каркасным, можете поизучать его свойства. В задаче по сути просили доказать, что у такого тетраэдра суммы длин скрещивающихся рёбер равны.

Ответ:

 3

Ошибка.
Попробуйте повторить позже

Задача 19#63813

Дана треугольная призма ABCA ′B ′C′ с основанием ABC  и боковыми рёбрами AA′,BB′,CC ′ . На диагоналях AB′,BC′,CA ′ отмечены точки D,E,F  соответственно. Найдите отношение, в котором плоскость DEF  делит отрезок    ′
AA , если        ′           ′
AD :DB  =1 :1,BE :EC = 1:2  ,        ′
CF :FA  =1 :3.

Источники: ДВИ - 2020, вариант 201, задача 6 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

Надо как-то разобраться с плоскостью DEF и отрезком AA'. Для этого можно, например, отыскать какую-нибудь плоскость, в которой будут две точки нашей плоскости DEF и отрезок AA'. Потенциально это могут быть плоскости ABB'A' и ACC'A', в которых есть по одной точке из плоскости DEF. Как бы нам найти еще какую-нибудь точку?

Подсказка 2

Грани нашей призмы являются параллелограммами, поэтому D- не только середина AB', но и A'B. Стало быть точка D лежит еще и в плоскости BA'C', в которой лежит еще и точка E. Тогда если провести прямую ED, она пересечет луч C'A' в какой-то точке P. Ураааа! Вторая точка найдена. Осталось только понять в каком отношении FP делит A'A. Для начала поймите, как относятся PA' и A'C'...

Подсказка 3

С помощью теоремы Менелая вы легко убедились, что PA'=A'C'. У нас осталась совсем простая задачка: В параллелограмме ACA'P точка F делит A'C в отношении 3:1, а нужно найти как PF делит AA'.

Подсказка 4

Если вы еще не решили ее, то советую продлить отрезок PF до пересечения с AC в точке Q и посмотреть, как относятся PA' и AQ.

Показать ответ и решение

Точки D  и F  лежат в плоскости BCA ′ . Обозначим через G  точку пересечения прямой DF  с прямой BC  .

PIC

Из того, что AD :DB ′ =1 :1,CF :FA ′= 1:3  , следует, что GC = 12BC  . Обозначим через H  точку пересечения прямой GE  с прямой CC ′ . Из того, что GC = 12BC  и BE :EC ′ = 1:2  , следует, что CH = 17CC ′ . Обозначая через K  точку пересечения прямой HF  с прямой AA′ , получаем KA ′ = 37AA′ . Стало быть, A ′K :KA = 3:4.

Ответ:

 3 :4

Ошибка.
Попробуйте повторить позже

Задача 20#63817

В основании четырёхугольной пирамиды ABCDS  лежит параллелограмм ABCD  . На ребре SB  отмечена точка E  , так что SE :EB = 2:1  . На ребре SD  отмечена точка F  , так что SF :FD = 1:2  . Найдите отношение, в котором плоскость AEF  делит объём пирамиды.

Источники: ДВИ - 2020, вариант 205, задача 6 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

Попробуем как-то воспользоваться данными в условии отношениями…быть может, сделаем такое дополнительное построение, чтобы указанные в условии отрезки были в подобных треугольниках?

Подсказка 2

Проведите через точки B, C, D прямые, параллельные AS, и отметьте их точки пересечения B’, C’, D’ соответственно с плоскостью AEF. Что можно сказать о B’B, C’C, D’D?

Подсказка 3

B’B = 1/2 AC, D’D = 2AS, C’C = 5/2AS. Давайте теперь подумаем, как нам было бы удобнее считать объём? Быть может, разбить нашу пирамиду на несколько частей поменьше?

Подсказка 4

Выразите объем пирамиды через объемы ABDS и BCDS

Показать ответ и решение

Проведём через точки B,C,D  соответственно прямые l ,l ,l
B  C D  , параллельные AS  . Обозначим через B′,C′,D′ соответственно точки пересечения плоскости AEF  с прямыми lB,lC  , lD  .

PIC

Тогда BB ′ = 12AS,DD ′ =2AS  , откуда CC′ = 52AS  . Пусть G− точка пересечения плоскости AEF  с CS  . Тогда SG :GC = 2:5  . Далее,

VAEGFS = VAEFS +VEGFS = 2⋅ 1 ⋅VABDS + 2⋅ 1⋅ 2⋅VBCDS =
                       3 3         3  3 7

= 2⋅ 1+ 2⋅ 1 ⋅ 2⋅ 1V   = 1V     .
  3  3  3 3  7 2 ABCDS   7 ABCDS

Стало быть, искомое отношение равно 1:6.

Ответ:

 1 :6

Рулетка
Вы можете получить скидку в рулетке!