Тема ШВБ (Шаг в будущее)

Функции на ШВБ

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела швб (шаг в будущее)
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#77788

Функция f(x)  при всех действительных x⁄= 1  удовлетворяет соотношению

       (x+-1)
(x− 1)f  x− 1  +4f(x)+ 14x= 0

Решите уравнение

4 ⋅8x = 7+ 2f(x)

Источники: ШВБ - 2021, 11 (см. olymp.bmstu.ru)

Показать ответ и решение

Сделаем замену:

(|    x-+1
|{ t= x − 1,
||( x = t+1.
      t− 1

Тогда функция f(t)  при всех вещественных t⁄= 1  удовлетворяет соотношению

( t+1-  )       ( t+1)      t+1-
  t− 1 − 1 f(t)+4f t− 1 + 14 ⋅t− 1 =0.

При всех фиксированных x⁄= 1  значения f(x)  и  (   )
f xx+−11 удовлетворяют системе уравнений:

(        (   )
{  (x− 1)f xx+−11 + 4f(x)+ 14x= 0,
(  -2-f(x)+ 4f(x+1)+ 14⋅ x+1= 0,
   x−1        x−1      x−1

(       (   )
{ (x− 1)f  x+x−11- =− 4f(x)− 14x,
( 2f(x)+ 4(x − 1)f(x+1)+ 14(x +1)= 0,
                x−1

Подставим первое уравнение во второе:

2f(x)− 16f(x)− 56x+ 14(x +1)= 0⇒ f(x)=1 − 3x

Решим заданное уравнение:

                                        (     )
4⋅8x =7 +21−3x ⇒ 4(8x)2− 7⋅8x − 2= 0⇒ 2(8x− 2) 8x + 14 = 0⇒ 23x = 2⇒ x= 13
Ответ:

 1
3

Ошибка.
Попробуйте повторить позже

Задача 2#65465

Для всех неотрицательных значений вещественной переменной x  функции f(x)  выполняется условие

                -----43----
f(x+ 1)+1= f(x)+(x+ 1)(x+ 2)

Вычислите   101
f(2020)  , если f(0)= 2020  .

Источники: ШВБ-2020, (см. olymp.bmstu.ru)

Показать ответ и решение

Докажем по индукции, что

                   -1--
f(n)= 2020− n +43(1− n+ 1)

_________________________________________________________________________________________________________________________________________________________________________________

База очевидна:

f(0)= 2020− 0 +43(1 − 1)= 2020

_________________________________________________________________________________________________________________________________________________________________________________

Переход несложно доказать:

                      43                (     1  )         43
f(n+ 1)=− 1+f(n)+ (n-+1)(n-+2)-=2020− n +43 1− n+1- − 1+ (n-+1)(n-+2) =

              (                         )                 (           )
2020− (n+ 1)+ 43 1+ -----1-----− --n-+2---- = 2020− (n +1)+ 43 1− ---1----
                  (n+ 1)(n+ 2)  (n +1)(n +2                      (n+ 1)+ 1

_____________________________________________________________________________________

Таким образом, по доказанной формуле

f(2020)= 2020− 2020+ 43(1−--1---)= 2020= 101⋅20-
                       2020+ 1    47     47

_________________________________________________________________________________________________________________________________________________________________________________

Замечание. Вот как прийти к решению:

f(n)=f(n− 1)− 1+---43---= f(n − 2)− 2+43(--1---+---1---)=
                n(n+ 1)               n(n+ 1)  n(n− 1)

                  1       1          1
= f(n− 3)− 3+ 43(n(n+-1) + (n-− 1)n + (n−-2)(n−-1))=

= f(0)− n+ 43(--1---+ ---1---+...+ -1-)=
            n(n+ 1)  (n− 1)n      1⋅2

            1  --1-  --1-   1      1  1
=f(0)− n +43(n − n+ 1 + n − 1 − n + ...+ 1 − 2)=

                1
=2020− n+43(1− n+-1)
Ответ:

 47
20

Ошибка.
Попробуйте повторить позже

Задача 3#77995

Найдите наименьшее значение выражения

3f(1)+-6f(0)−-f(−-1)
    f(0)− f(−2)   ,

если f(x)= ax2+ bx+ c  — произвольная квадратичная функция, удовлетворяющая условию b> 2a  и принимающая неотрицательные значения при всех действительных x.

Источники: ШВБ - 2020, 11 класс (см. olymp.bmstu.ru)

Показать ответ и решение

Имеем

(| f(1)= a+ b+ c,
|||{ f(0)= c,
|
|||( f(−1)=a − b+ c,
  f(−2)=4a− 2b+ c

Тогда исходное уравнение принимает вид

3f(1)+6f(0)−-f(−1)  3(a-+b+-c)+6c−-a+b-− c 2a+-4b+-8c   a+-2b+-4c
    f(0)− f(− 2)    =      c− 4a+ 2b− c    =  2b− 4a  =  b − 2a

Поскольку f(x)=ax2+ bx+c  — произвольная квадратичная функция, принимающая неотрицательные значения при всех действительных x,  то

                       b2
a >0,D =b2− 4ac≤0 ⇒ c≥ 4a

Тогда

                              2
a+-2b+-4c   a+2b+-ba2- a(1+-2ab+-ba2)   t2+-2t+1-  (t+-1)2-
  b− 2a   ≥   b− 2a =    a(ba − 2)  =   t− 2  =  t− 2 ,

где t= ba,t> 2.

Рассмотрим функцию g(t)= (tt+−1)22-  и найдем ее наименьшее значение при t>2.

   ′  2(t+ 1)(t− 2)− (t+1)2  (t+1)(2(t− 2)− (t+ 1))  (t+ 1)(t− 5)
g(t) = ------(t− 2)2-----= ------(t−-2)2------ = --(t−-2)2--,

при t= 5  производная g′(t)  равна 0  и, проходя через эту точку, меняет знак с «минуса» на «плюс», следовательно, tmin = 5,gmin = g(5)= 12.

Ответ: 12

Ошибка.
Попробуйте повторить позже

Задача 4#68637

Найдите множество значений функции y = f[2019](x)  , где

         cos2x+-2sin2x-  [n]
f(x)=log2   1− sin3x  , f  (x)=f◟(f(f◝(.◜..(f◞(x)...)
                                nраз

для любого натурального числа n  .

Источники: ШВБ-2019, 11.3 (см. olymp.bmstu.ru)

Показать ответ и решение

         cos2x+-2sin2x-     ---1---
f(x) =log2   1− sin3x  = log2 1− sin 3x .

Функция t(x)= sin3x  принимает значения [− 1;1]  . Рассмотрим функцию       1
z(t) =1−t  , определенную на полуинтервале [−1;1)  . Графиком этой функции является гипербола с асимптотами t= 1  и z =0  . Функция z(t)= 11−t  на промежутке [−1;1)  неограниченно возрастает. Таким образом, минимальное значение z(t)  равно 12  , оно достигается в точке t= −1  , и функция z(t)= 11−t-  на промежутке [−1;1)  принимает все значения из промежутка [    )
 12;+∞ . Функция y1(z) =log2z  на промежутке [    )
 12;+ ∞ возрастает и принимает все значения из промежутка

[        )
 log2 1;+∞  =[−1;+ ∞)
    2

Функция f(f(x))  будет принимать те же значения, что и функция f(y1)  , если y1 ∈[−1;+ ∞)  . Поскольку t(y1)= sin(3y1)  при y1 ∈ [− 1;+∞ )  принимает все значения из отрезка [− 1;1]  , то повторяя рассуждения, приведенные выше, получаем, что множеством значения функции f(f(x))  является промежуток [−1;+∞)  . И так далее, следовательно, множеством значений функции f[2019](x)  является промежуток [− 1;+ ∞).

Ответ:

 [−1;+ ∞)

Ошибка.
Попробуйте повторить позже

Задача 5#103421

Найдите множество значений функции

     -----1-----
f(x) =g (64g(g(lnx)))
          1025   ,

где g(x)= x5 +-1.
         x5

Показать ответ и решение

Рассмотрим сначала функцию h(t)= t+1∕t.  Функция h(t)  определена для всех t⁄= 0.  Найдем экстремумы функции h(t).

Для того найдем интервалы знакопостоянства производной функции:

 ′       1   (t− 1)(t+ 1)
h (t)= 1− t2 =----t2-----

h′(t)=0  при t= ±1

Проходя через точку t= −1,  производная  ′
h(t)  меняет знак с плюса на минус, следовательно, t= −1  является точкой максимума:

hmax = h(−1)= −2

Проходя через точку t= 1,  производная  ′
h (t)  меняет знак с минуса на плюс, следовательно, t=1  является точкой минимума:

hmin =h(1)=2

Множеством значений этой функции является множество:

(−∞; −2]∪[2;+∞ )

Функция g(x)= x5+ 1∕x5 = h(x5).  Поскольку функция t=x5  возрастает на промежутке (− ∞;0)∪(0;+ ∞)  и принимает все числовые значения, то множеством значений функции h(x5),  следовательно, и g(x),  является множество:

(−∞; −2]∪[2;+∞ )

причем gmax = g(−1)=− 2,  gmin = g(1)= 2.  По той же причине множеством значений функции g(ln(x))  также является множество (−∞;− 2]∪ [2;+∞ ).

Найдем множество значений функции g(g(lnx))= g(q)  :

Так как функция нечетная, то будем рассматривать только неотрицательные аргументы. так как функция g(q)  определена при q ∈ [2;+∞ ),  и на этом промежутке возрастает, то ее минимальное значение

gmin = 25+1∕25 = 1025∕32

Тогда областью значений функции g(g(lnx))  является множество:

(−∞; −1025∕32]∪ [1025∕32;+∞),

а функции 64⋅g(g(lnx))
   1025  — множество:

(−∞; −2]∪[2;+∞ )

Значит, множество значений функции  (64⋅g(g(lnx)))
g --1025-- равно множеству значений функции g(g(lnx)).

Таким образом:

 (          )
g 64⋅g(g(lnx))  ∈(−∞; −1025∕32]∪ [1025∕32;+∞)
      1025

Отсюда находим множество Ef  значений функции f(x)= -(---1----)-
      g 64⋅g(g10(l2n5x))

    [ -32- )  (  -32-]
Ef = −1025;0  ∪ 0;1025
Ответ:

[− -32-;0)∪ (0;-32-]
  1025        1025

Рулетка
Вы можете получить скидку в рулетке!