Функции на ШВБ
Ошибка.
Попробуйте повторить позже
Функция при всех действительных
удовлетворяет соотношению
Решите уравнение
Источники:
Сделаем замену:
Тогда функция при всех вещественных
удовлетворяет соотношению
При всех фиксированных значения
и
удовлетворяют системе уравнений:
Подставим первое уравнение во второе:
Решим заданное уравнение:
Ошибка.
Попробуйте повторить позже
Для всех неотрицательных значений вещественной переменной функции
выполняется условие
Вычислите , если
.
Источники:
Докажем по индукции, что
_________________________________________________________________________________________________________________________________________________________________________________
База очевидна:
_________________________________________________________________________________________________________________________________________________________________________________
Переход несложно доказать:
_____________________________________________________________________________________
Таким образом, по доказанной формуле
_________________________________________________________________________________________________________________________________________________________________________________
Замечание. Вот как прийти к решению:
Ошибка.
Попробуйте повторить позже
Найдите наименьшее значение выражения
если — произвольная квадратичная функция, удовлетворяющая условию
и принимающая неотрицательные
значения при всех действительных
Источники:
Имеем
Тогда исходное уравнение принимает вид
Поскольку — произвольная квадратичная функция, принимающая неотрицательные значения при всех
действительных
то
Тогда
где
Рассмотрим функцию и найдем ее наименьшее значение при
при производная
равна
и, проходя через эту точку, меняет знак с «минуса» на «плюс», следовательно,
Ошибка.
Попробуйте повторить позже
Найдите множество значений функции , где
для любого натурального числа .
Источники:
Функция принимает значения
. Рассмотрим функцию
, определенную на полуинтервале
.
Графиком этой функции является гипербола с асимптотами
и
. Функция
на промежутке
неограниченно
возрастает. Таким образом, минимальное значение
равно
, оно достигается в точке
, и функция
на промежутке
принимает все значения из промежутка
. Функция
на промежутке
возрастает и принимает все
значения из промежутка
Функция будет принимать те же значения, что и функция
, если
. Поскольку
при
принимает все значения из отрезка
, то повторяя рассуждения, приведенные выше, получаем, что множеством
значения функции
является промежуток
. И так далее, следовательно, множеством значений функции
является промежуток
Ошибка.
Попробуйте повторить позже
Найдите множество значений функции
где
Рассмотрим сначала функцию Функция
определена для всех
Найдем экстремумы функции
Для того найдем интервалы знакопостоянства производной функции:
Проходя через точку производная
меняет знак с плюса на минус, следовательно,
является точкой
максимума:
Проходя через точку производная
меняет знак с минуса на плюс, следовательно,
является точкой
минимума:
Множеством значений этой функции является множество:
Функция Поскольку функция
возрастает на промежутке
и принимает все числовые
значения, то множеством значений функции
следовательно, и
является множество:
причем
По той же причине множеством значений функции
также является множество
Найдем множество значений функции :
Так как функция нечетная, то будем рассматривать только неотрицательные аргументы. так как функция определена при
и на этом промежутке возрастает, то ее минимальное значение
Тогда областью значений функции является множество:
а функции — множество:
Значит, множество значений функции равно множеству значений функции
Таким образом:
Отсюда находим множество значений функции