Функции на ШВБ
Ошибка.
Попробуйте повторить позже
Функция при всех действительных удовлетворяет соотношению
Решите уравнение
Подсказка 1
У нас всего одно уравнение на две неизвестные f(x) и f((x+1)/(x-1)). Значит, нужно получить ещё одно уравнение, подставив вместо x такое значение, что аргументы функций останутся прежними.
Подсказка 2
Если мы подставим (x+1)/(x-1) вместо x, то мы получим новое уравнение на наши неизвестные. То есть у нас уже имеется система из двух уравнений с двумя неизвестными. Решив её, мы получим f(x).
Сделаем замену:
Тогда функция при всех вещественных удовлетворяет соотношению
При всех фиксированных значения и удовлетворяют системе уравнений:
Подставим первое уравнение во второе:
Решим заданное уравнение:
Ошибка.
Попробуйте повторить позже
Для всех неотрицательных значений вещественной переменной функции выполняется условие
Вычислите , если .
Источники:
Подсказка 1
В равенстве из условия можно выразить f(x+1) через f(x). Кажется, это намекает на какую-то рекурсию, попробуем выразить f(x) через f(x-1) и т.д. Заметна ли какая-то закономерность?
Подсказка 2
Да, на самом деле для натурального n можно выразить f(n) через f(0) = 2020, получится равенство f(n) = 2020 - n + 43(1/(1×2) + 1/(2×3) + ... + 1/(n×(n+1))). Подумайте, как можно свернуть сумму дробей в скобках.
Подсказка 3
Попробуйте каждую дробь из суммы расписать как разность двух дробей так, чтобы при суммировании почти все члены сокращались.
Подсказка 4
1/(k(k+1)) = 1/k - 1/(k+1), тогда все члены сокращаются, кроме первого и последнего, получаем f(n) = 2020 - n + 43(1 - 1/(n+1)). Что можно применить, чтобы доказать эту формулу для любого натурального n?
Подсказка 5
Конечно же, индукцию! База легко проверяется, переход также несложно доказывается. Остаётся посчитать f(2020) :)
Докажем по индукции, что
_________________________________________________________________________________________________________________________________________________________________________________
База очевидна:
_________________________________________________________________________________________________________________________________________________________________________________
Переход несложно доказать:
_____________________________________________________________________________________
Таким образом, по доказанной формуле
_________________________________________________________________________________________________________________________________________________________________________________
Замечание. Вот как прийти к решению:
Ошибка.
Попробуйте повторить позже
Найдите наименьшее значение выражения
если — произвольная квадратичная функция, удовлетворяющая условию и принимающая неотрицательные значения при всех действительных
Подсказка 1
Давайте не побоимся и подставим вместо f(1), f(0) и т.д. их настоящие значения через a, b, c и вспомним, когда квадратных трёхчлен принимает только неотрицательные значения?
Подсказка 2
Верно, при a > 0, D <= 0, это даёт нам оценку на c и a, как бы нам это использовать?
Подсказка 3
Можно заметить, что там, где есть множитель b, модуль степени a на 1 меньше, может быть получится сделать какую-нить замену?
Подсказка 4
Да, можно вынести a (a > 0) и сделать замену t = a/b, а у выражения относительно t мы легко можем найти точки минимума. Остаётся только ...
Подсказка 5
Проверить, что этот минимум достигается
Имеем
Тогда исходное уравнение принимает вид
Поскольку — произвольная квадратичная функция, принимающая неотрицательные значения при всех действительных то
Тогда
где
Рассмотрим функцию и найдем ее наименьшее значение при
при производная равна и, проходя через эту точку, меняет знак с «минуса» на «плюс», следовательно,
Ошибка.
Попробуйте повторить позже
Найдите множество значений функции , где
для любого натурального числа .
Источники:
Подсказка 1
Внимательно взгляните на числитель! Расписав косинус двойного угла, становится понятно, что cos2x + 2sin²x = 1
Подсказка 2
sin3x принимает значения в промежутке [-1; 1], тогда какие значения принимает вся дробь и какие значения может принимать логарифм от такой дроби?
Подсказка 3
Если вы правильно исследовали f(x), то значения её будут в промежутке [-1; +∞). Теперь найдите множество значений f(f(x)).
Подсказка 4
Подумайте, какие значения принимает sin(3*f(x)) и что мы в таком случае мы можем сказать про множество значений f(f(x)). А про множество значений f(f(f(…f(x))))?
Функция принимает значения . Рассмотрим функцию , определенную на полуинтервале . Графиком этой функции является гипербола с асимптотами и . Функция на промежутке неограниченно возрастает. Таким образом, минимальное значение равно , оно достигается в точке , и функция на промежутке принимает все значения из промежутка . Функция на промежутке возрастает и принимает все значения из промежутка
Функция будет принимать те же значения, что и функция , если . Поскольку при принимает все значения из отрезка , то повторяя рассуждения, приведенные выше, получаем, что множеством значения функции является промежуток . И так далее, следовательно, множеством значений функции является промежуток