Алгебраические текстовые задачи на ШВБ
Ошибка.
Попробуйте повторить позже
За время освоения космического пространства на различных орбитах скопилось по данным NASA около 300 тысяч объектов космического мусора. Дальнейшее использование космического пространства в ближайшем будущем может быть существенно осложнено всё возрастающей угрозой столкновения с космическим мусором. Согласно результатам исследований, удаление 3-5 крупных объектов в год с низких околоземных орбит позволяет предотвратить цепную реакцию роста объектов космического мусора в будущем. На данный момент работающей технологией по утилизации космического мусора является увод старых спутников. Это можно сделать с помощью аппаратов-захватчиков, которые буксируют мусор на орбиты для захоронения.
Рассмотрим плоскость орбиты захоронения. Пусть крупный фрагмент мусора движется в этой плоскости по эллиптической
орбите с большой полуосью равной 5000 км, малой - 2500 км. (Для удобства вычислений все расчеты будем производить в
тысячах километров.) Введем систему координат с началом отсчета в центре рассматриваемого эллипса, с осью абсцисс,
направленной вдоль большой полуоси. Тогда уравнение траектории движения обломка запишется следующим образом:
.
На некотором удалении по оси абсцисс находится межпланетная научная станция . С нее стартует летательный аппарат-захватчик,
который движется по параболической траектории:
. Он должен совершить маневр по переходу с одной орбиты на
другую и плавно подойти к обломку для изменения его скорости и направления движения.
Определите координаты точки касания указанных траекторий и угол, который образует с положительным направлением оси абсцисс
касательная к параболической траектории в начальный момент времени в точке .
Источники:
Выразим из уравнений
функции в явном виде:
Найдём их производные:
Приравняем производные друг к другу:
Будем искать целые решения уравнения. Если такие есть, то они являются делителями свободного члена.
подходит. Преобразуем уравнение, поделив на
, получим
Но поэтому подходит только
. Подставляя
в любое из исходных выражений, находим
. Значит,
координаты точки касания это
Теперь вычислим тангенс для точки с оси абсцисс. При
из
получаем абсциссу
Подставляем
в производную и находим тангенс угла касательной в начальный момент:
координаты
угол может быть (две касательных из точки
)
Ошибка.
Попробуйте повторить позже
Во всем мире популярна игра в хоккей. Многое в игре зависит от вратаря. Для отработки навыков вратарей и обеспечения тренировочного процесса, который бы не зависел от других игроков, создали шайбомет. Автомат можно настроить так, чтобы он выбрасывал шайбы с заданной временной частотой, скоростью и под определенным углом.
Пусть линия ворот находится на расстоянии 25 м от центральной точки хоккейной площадки. Автомат установлен на расстоянии
м от точки
по направлению к воротам, скорость выброса шайбы равна
м/c. Броски производятся в плоскости,
перпендикулярной поверхности льда и линии ворот. При этом для обеспечения безопасности траектория вылетающих шайб должна, с одной
стороны, находиться не выше прямой линии, соединяющей центр ледовой площадки
с точкой, находящейся в плоскости полета шайб, в
плоскости ворот, и на расстоянии одного метра от поверхности льда, а с другой стороны — должна пересекать плоскость ворот по
нисходящей ветви траектории.
Определите максимально возможное значение тангенса угла, под которым могут вылетать шайбы из шайбомета, если траектория
движения шайбы, рассматриваемой как материальная точка, в плоскости ее полета в системе координат с центром в и осью абсцисс,
направленной вдоль поверхности льда, описывается уравнениями
Для упрощения вычислений можно считать, что ускорение свободного падения м/c
Источники:
Введем систему координат с центром в точке Ось абсцисс направим к линии ворот.
Выразим время из первого уравнения системы и подставим во второе
Чтобы шайба была ниже условной линии для любого значения требуется выполнение условия
для любого Поскольку траектория вылетающих шайб должна пересекать плоскость ворот по нисходящей ветви траектории,
то неравенство
должно выполняться для всех
Перепишем неравенство в более удобном виде и учтем, что выполнение этого неравенства возможно лишь при неположительном дискриминанте.
Подставляем м/c
Подставляем м,
м/с
Теперь посчитаем сам
Значит, максимально возможное значение равно
Ошибка.
Попробуйте повторить позже
Четыре лифта небоскреба, отличающиеся цветовой гаммой (красный, синий, зеленый и желтый) движутся в разных направлениях и с разной, но постоянной скоростью. Наблюдая за лифтами, некто включил секундомер, и, глядя на его показания, стал записывать: 36-я секунда — красный лифт догнал синий (двигаясь с ним в одном направлении). 42-я секунда — красный лифт разминулся с зеленым (двигаясь в разных направлениях), 48-я секунда — красный лифт разминулся с желтым, 51-я секунда — желтый лифт разминулся с синим, 54-я секунда — желтый лифт догнал зеленый лифт. На какой секунде от начала отсчета зеленый лифт разминется с синим, если за период наблюдения лифты не останавливались и не меняли направления движения?
Источники:
Занумеруем лифты: красный — первый, синий — второй, зеленый — третий, желтый — четвертый. Лифты движутся с постоянными
скоростями, следовательно, для каждого лифта пройденное расстояние в некоторой системе координат зависит от времени
по закону.
По условию задачи красный и синий лифт движутся в одном направлении, причем красный догоняет синий, следовательно:
Пусть тогда и
Зеленый и желтый лифты движутся в противоположном направлении с двумя первыми, и желтый догоняет зеленый, следовательно:
Построим графики функций согласно условию задачи.
Нужно определить абсциссу точки Точка
— точка пересечения медиан треугольника
Воспользуемся теоремой
Фалеса:
на 46 секунде
Ошибка.
Попробуйте повторить позже
Из пункта в пункт
расстояние между которыми равно
км, одновременно вышел турист и выехал велосипедист. Затратив на путь
от
до
не менее получаса, велосипедист, не останавливаясь, повернул обратно и стал двигаться по направлению к пункту
увеличив при этом свою скорость на
Через
мин после своего отправления из пункта
велосипедист встретился с туристом.
Определите наибольшее возможное целое значение скорости (в км/ч) туриста, и для этого значения скорости туриста найдите
первоначальную скорость велосипедиста.
Пусть км/ч — скорость туриста,
км/ч — первоначальная скорость велосипедиста,
ч — время, затраченное велосипедистом на путь
от
до
Тогда
Для того чтобы квадратное уравнение имело решение, необходимо
Поскольку по условию и
т.е.
то
Используя оценку
получаем
оценку
и
Наибольшее возможное целое значение скорости
Найдем первоначальную
скорость велосипедиста при
из уравнения
Поскольку и
то