Оптимизация на Энергетике
Ошибка.
Попробуйте повторить позже
Найдите максимальное значение величины если известно, что
Источники:
Подсказка 1
На что намекает сумма квадратов?)
Подсказка 2
На квадрат длины вектора! Введем декартову систему координат. С левой части мы разобрались - это квадрат длины вектора (x, y, z). А чем является правая часть?)
Подсказка 3
Правая часть - это скалярное произведение векторов a = (x, y, z) и c = (3, 8, 1). Теперь правую часть можно оценить сверху с помощью длин сомножителей, осталось лишь сделать вывод) Помним, что вектор c - фиксированный!
Введем декартову систему координат и рассмотрим произвольный вектор с координатами и фиксированный вектор с координатами . Тогда левая часть условия представляет собой квадрат длины вектора а правая — скалярное произведение векторов и
Оценивая скалярное произведение через длины сомножителей, получаем
Как известно, равенство возможно, а достигается при векторах, лежащих на одной прямой. Поэтому максимальное значение будет достигаться, например, при
Подставляя значения, получаем
Ошибка.
Попробуйте повторить позже
Энергетические затраты Пончика во время еды пропорциональны корню квадратному из объема съедаемой порции. Что выгоднее для экономии энергетического запаса: съесть свежую кулебяку как одну порцию или разделить ее на две? В какое максимальное количество раз (и в какую сторону) изменятся затраты при разделении кулебяки на две порции?
Источники:
Подсказка 1
Понятно, что нужно как-то ввести переменные. Пусть две порции относятся друг к другу по величине как с. Также нам нужен какой-то коэффициент пропорциональности, который можно обозначить за а. После этого остается записать отношение двух величин — когда мы едим одну порцию и когда две — через с и х. (где х — переменная: размер, например, первой порции).
Подсказка 2
Мы хотим исследовать это выражение относительно с и найти его экстремум. Он может быть найден с помощью производной или из других соображений.
Пусть кулебяка делится на порции объёмом и Тогда при съедании всей кулебяки энергетические затраты составят а при разделении на две порции составят Требуется исследовать отношение этих величин. Для удобства рассмотрим квадрат их отношения
Величина поэтому
Таким образом,
Выгоднее съесть как одну порцию
В раз