Последовательности и прогрессии на ИТМО
Ошибка.
Попробуйте повторить позже
Последовательность задана рекуррентным соотношением
и начальными условиями Чему может быть равно
Источники:
Подсказка 1
Что первое хочется сделать, увидев рекуррентную формулу? Попробовать подставить что-то вместо n. Например, взять n-1 и посмотреть, что получится. В задаче же у нас спрашивают про чётный член. Тогда в теории надо как-то избавиться от членов вида n-1 и n-3 в формуле. Посмотрев на формулы для n и n-1, что можно попробовать сделать?
Подсказка 2
Давайте сложим две формулы, тогда останутся только члены с номерами n, n-2 и n-4. Теперь, записав полученное выражение как разность членов n, n-2 и n-2, n-4, можем найти формулу для разности 2k и 2(k-1) члена, через суммирование таких выражений. Как же теперь можно найти формулу для 2k-ого члена?
Подсказка 3
Верно, сложим аналогично выражения для всех k от 1 до 3. Тогда слагаемые буду сокращаться и мы сможем выразить 6-ый член. Победа!
Перепишем рекуррентную формулу:
Записав её для вместо получим
откуда
Поскольку то
Значит,
Ошибка.
Попробуйте повторить позже
Сумма первых шести членов арифметической прогрессии равна сумме следующих четырех членов. Найдите
Пусть — разность прогрессии. Тогда в частности . Тогда сумма первых шести членов прогрессии равна
а сумма следующих четырёх равна
По условию эти суммы равны:
Подставим в искомое выражение
Замечание.
При сокращении мы воспользовались тем, что хотя в условии олимпиады ИТМО-2020 этого (или равносильного этому условия о том, чтобы прогрессия была не постоянной) дано не было. Судя по всему, предполагалось, что искомое отношение определено и задумываться о таком не надо было.
Ошибка.
Попробуйте повторить позже
Последовательность задана условиями и Найдите
Перебрав несколько первых членов последовательности, можно заметить, что числитель предыдущего является знаменателем следующего.
Определим последовательность следующим образом: , то есть
Подставив это представление в рекуррентную формулу, мы получим
Члены последовательности имеют вид Можно заметить, что разность двух соседних членов каждый раз увеличивается в три раза, что характерно для геометрической прогрессии со знаменателем 3. Значит, имеет смысл искать как Можно проверить, что такая любая такая последовательность удовлетворяет рекуррентной формуле. Подставляя начальные значения и решая систему уравнений, находим и , откуда
Ошибка.
Попробуйте повторить позже
Бесконечная числовая последовательность задана формулой где запись означает целую часть числа Сколько раз в этой последовательности встречается число
Подсказка 1
Элементы последовательности - целые части. Для каких х уравнение [x]=72 имеет решение?
Подсказка 2
Для [x]=72 72≤х<73. Так что мы можем снять целую часть и перейти к неравенству на n. Дальше следует несложный подсчёт.
По определению целой части из условия задачи следует, что нужно определить количество натуральных чисел , удовлетворяющих неравенству
С учётом натуральности можно уточнить неравенство
Количество подходящих равно