Тема Газпром

Стереометрия на Газпроме

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела газпром
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#99239

Для монтажа бурового оборудования в скважину используется подвес, состоящий из металлического каркаса в форме равностороннего треугольника и трёх регулируемых по длине тросов протянутых через вершины треугольника и соединяющихся на крюке. Расстояние между тросами на каркасе составляет 2  м, а их первоначальная длина от каркаса до крюка — 3  м. При спуске оборудования оказалось, что крюк нужно сместить на √3
12  м вдоль медианы каркаса по направлению от вершины. На сколько метров нужно удлинить трос, проходящий через эту вершину?

Источники: Газпром - 2024, 11.6 (см. olympiad.gazprom.ru)

Подсказки к задаче

Подсказка 1

Из условия следует, что у нас изначально есть правильный тетраэдр со стороной 2. После этого мы как-то меняем положение крюка, чтобы точка вершины сдвинулась вдоль медианы в основании на нужную длину. Подумайте, что это значит в терминах геометрии.

Подсказка 2

Это значит, что проекция вершины S на плоскость основания сместилась на нужную длину, но при этом проекция S всё равно лежит на медиане. Если S₁ — новая точка, то мы можем посчитать S₁O₁ как катет прямоугольного треугольника S₁DO₁, где D — середина BC, а O₁ — сдвинутая на нужную длину точка O. Но тогда мы можем найти и S₁A (из какого прямоугольного треугольника?), а значит, и разность длин троса. Ну и всё, идейно задача решена, осталось посчитать!

Показать ответ и решение

Пирамида SABC  — правильная, тогда медиана

                  √3  √ -
AD = AB ⋅sin60∘ =2 ⋅2-=   3,

а апофема

    ∘ ---------  ∘------   √-
SD =  SB2 − BD2 = 32− 12 = 2 2.

Так как O  — точка пересечения медиан треугольника ABC  , то

            √-              √-
AO = 2AD = 2-3,  DO = 1AD = -3.
     3      3         3     3

При увеличении длины троса SA  проекция вершины пирамиды переместиться в точку O1  , так что       √-
OO1 = 132  , тогда

      √ -  √-   √ -        √-   √-  √ -
AO1 = 2-3+ -3-= 3-3, DO1 = -3-− -3= --3.
       3   12    4          3   12   4

Поскольку, при увеличении длины троса SA  до SA
  1  длина апофемы треугольника S BC
 1  равна S D= SD
 1  , то

                   ┌ -------------
      ∘ --------2- ││∘  √ -   ( √3)2  ∘ 125  5√5
S1O1 =  S1D2− DO1 =  (2 2)2−   4-- =   16-= -4-.

Следовательно,

                  ┌ ----------------
      ∘---------- ││ ( 5√5-)2  (3√3-)2  ∘-152  ∘ ---
S1A =  S1O21 + AO21 =∘  -4-  +  -4-   =   16-=  9,5.

Тогда трос нужно удлинить на √9,5− 3  .

Ответ:

 √9,5− 3

Ошибка.
Попробуйте повторить позже

Задача 2#99232

Десять шаров одинакового радиуса сложены в виде треугольной пирамиды так, что каждый шар касается как минимум трёх других. Найти радиус сферы, в которую вписана пирамида из шаров, если радиус шара, вписанного в центр пирамиды из шаров, касающегося шести одинаковых шаров, равен √-
 6− 1.

Источники: Газпром - 2023, 11.6 (см. olympiad.gazprom.ru)

Показать ответ и решение

При таком расположении десяти одинаковых шаров центры A,B,C,D  четырёх из них расположены в вершинах правильного тетраэдра, а точки касания расположены на ребрах этого тетраэдра. Следовательно, ребро тетраэдра равно четырём радиусам этих шаров, радиус внешней сферы больше радиуса шара, описанного около тетраэдра на четверть длины ребра тетраэдра, а радиус внутреннего шара меньше расстояния от центра тетраэдра до его грани на эту же величину. Рассмотрим сечение тетраэдра плоскостью ABM  :

Обозначим длину ребра тетраэдра за a  , радиус сферы, описанной вокруг пирамиды из шаров за R  , радиус шара, вписанного в центр пирамиды из шаров за r  .

В треугольнике ABM :

            √-                    √ -                   √-
AM  =BM  = a-3, ME  =MH  = 1AM = a--3, AH = BE = 2AM = a-3,
            2              3      6              3      3

следовательно,

                            √ -
AE =BH  =∘AM2--−-ME2-= 2√a-= a-6.
                        6    3

Из подобия треугольников AEM  и AHO  имеем

AO   AH    a√3  √2            √2-     a√6
AM- =-AE = a√6 =-2-и AO =BO = -2-AM = -4--

В треугольнике ABO  :

SABO = AH-⋅BO-= AB-⋅FO,
          2        2

следовательно,

                √--   √-
FO = AH-⋅BO-= a2-18= a-2.
       AB      12a    4

Тогда

             a√6  a   a(√6 +1)
R =AO + AL = -4-+ 4 = ---4----
             a√2   a   a(√2 − 1)
r= FO − FK = -4-− 4 = ---4----

Таким образом,

    √ -       -      -
R-= (√-6+-1)-=(√6 +1)(√ 2+1),
r   ( 2− 1)

откуда

R = (√6-+ 1)(√2+ 1)r= 5(√2+ 1).
Ответ:

 5(√2+ 1)

Ошибка.
Попробуйте повторить позже

Задача 3#98163

В сферу радиуса 3  вписана правильная треугольная призма ABCA B C
     1 1 1  с основанием ABC  и боковыми ребрами AA  ,BB  ,CC  .
   1   1   1  Отрезок CD  — диаметр этой сферы. Найти объем призмы, если       √-
AD = 2 6.

Источники: Газпром - 2022, 11.6 (см. olympiad.gazprom.ru)

Подсказки к задаче

Подсказка 1

Нам нужно понять, от чего зависит конструкция, то есть какими параметрами задаётся. С учетом того, что нам надо найти объём, то есть найти площадь основания на высоту, какие параметры нам удобно ввести, чтобы через них всё выражалось?

Подсказка 2

Удобно ввести высоту и радиус окружностей, в которые вписано каждое из оснований. Тогда, поскольку в силу симметрии CD — диаметр, то нам известна длина CD, а также известна длина AD. Это значит, что у нас есть два уравнения на две переменных (r и h), поскольку есть два прямоугольных треугольника у которого стороны либо константы, либо выражаются через r и h. Осталось решить такую систему и посчитать объём!

Показать ответ и решение

Плоскости оснований ABC  и A B C
  1 1 1  призмы пересекают сферу по окружностям, описанным около правильных треугольников ABC  и A1B1C1;  пусть их центры — точки O  и O1  соответственно.

Легко показать, что середина M  отрезка OO1  является центром сферы.

PIC

Проведем через точку C1  диаметр C1D  окружности с центром в точке O1.  Покажем, что CD  — диаметр сферы. Действительно, плоскость CC1D  перпендикулярна плоскостям основания и, значит, вместе с точкой O1  содержит отрезок OO1.  Т.к. C1D = 2DO1,  прямая CD  пересекает отрезок OO1  в его середине, т.е. в центре M  заданной сферы.

Пусть D1  — проекция точки D  на плоскость основания ABC,  высота призмы равна h,  а радиусы окружностей с центрами O  и    O1  равны r.  Рассмотрим треугольники CC1D  и ADD1.  Учитывая, что C1D = 2r,AD1 =r  (треугольник AOD1  равносторонний), CC1 = DD1 =h,  по т. Пифагора получаем систему уравнений:

{
  h2+4r2 = 62√
  h2+r2 =(2 6)2

Решая систему, находим, что         √-
r= 2,h =2 5.  Тогда сторона основания равна  √ -
2  3,  его площадь     √ -
S =3  3,  и следовательно, объем призмы           √--
V = S⋅h =6 15.

Ответ:

 6√15

Рулетка
Вы можете получить скидку в рулетке!