Миссия выполнима - задания по годам → .08 Миссия выполнима 2022
Ошибка.
Попробуйте повторить позже
Найдите значения дробей
и
если числа и
таковы, что
Источники:
Подсказка 1
Не совсем понятно, как работать с синусом суммы трех углов. Быть может, преобразуем при помощи формул?
Подсказка 2
Разложим синус трех слагаемых как синус суммы двух, после чего раскроем про формуле! Теперь делить почленно не составит труда - сможем найти A!
Подсказка 3
A + 1 равно сумме попарных произведений котангенсов! А как это преобразовать в выражение с тангенсами, чтобы связать с B?
Подсказка 4
Преобразуйте A как сумму обратных попарных произведений тангенсов и выразите через B.
Тогда подставим в и поделим почленно:
Значит,
Откуда
Ошибка.
Попробуйте повторить позже
В стране городов, некоторые из которых соединены авиалиниями. Беспосадочный перелёт из
в
назовём централизующим, если
из
можно в большее, чем из
число городов долететь без пересадки. Какое наибольшее число городов может насчитывать
авиамаршрут, все перелёты на котором централизующие?
Источники:
Подсказка 1
Рассмотрите маршрут, проходящий через города A₁, A₂, ... , Aₘ. Воспользуйтесь тем, что каждый перелет — централизующий.
Подсказка 2
Так как перелеты централизующие, значит, каждый раз число доступных городов увеличивалось. Исходя из этого оцените m.
Подсказка 3
При некотором значении m между A₁ и Aₘ будет маршрут, что даст противоречие. Получится оценка сверху на m, останется подобрать пример.
Через где
— произвольный город, обозначим число городов, соединённых беспосадочными авиалиниями с
Будем рассматривать
авиамаршрут, который проходит последовательно через города
и все перелёты на котором централизующие. Ясно, что
тогда
Равенство невозможно, поскольку имело бы своими следствиями взаимоисключающие равенства
и
так как
еще соединена с
Допустим, что и
Тогда
то есть город
соединён либо с
либо с
Но
соединён с
и
а
— с
и
Наконец, предположим, что и
Тогда
соединён с
соединён с
и
Получается,
что город
не соединён ни с
ни с
а тогда равенство
невозможно. Итак,
Приведём пример
системы авиалиний, для которой все перелёты на маршруте, проходящем последовательно через города
централизующие. Пусть города
и
(
) соединены, если выполнено хотя бы одно из следующих трёх
условий:
Ошибка.
Попробуйте повторить позже
В фирме работало 150 сотрудников, в том числе 73 женщины. Затем произошло объединение с другой фирмой, где женщины
составляли В результате доля женщин среди сотрудников стала равна
Найдите все возможные целые значения
Подсказка 1
Посчитаем, сколько всего сотрудников каждого пола оказалось в фирме после слияния.
Подсказка 2
Измерять количество людей через проценты не очень удобно, лучше запишем соотношение полов в виде 2n:3n. Теперь, добавляя количество людей в первой фирме, можно найти отношение количества женщин к количеству людей всего
Подсказка 3
Да, получаем сумму из целого числа и дробного, в знаменателе которого стоит n. Вспомним, что и n, и сама дробь должны быть целыми неотрицательными числами, и найдём все возможные варианты
В фирме, с которой произошло объединение, отношение числа женщин к числу мужчин равнялось Поэтому можно полагать,
что там было
женщин и
мужчин, где n
В результате объединения получилась фирма, среди сотрудников которой, ровно
женщин. Поскольку
то число делит
и может быть равным
Соответствующие значения
равны
Ошибка.
Попробуйте повторить позже
Через каждую пару противоположных рёбер куба проведена плоскость. На сколько частей эти плоскости разбивают куб?
Источники:
Подсказка 1
Нам довольно трудно представить разбиение на части внутри куба, так что давайте начнём с рассмотрения граней. Как проведённые плоскости разобьют поверхность куба?
Подсказка 2
Да, каждая грань делится плоскостями на 4 треугольника, соответственно вся площадь делится на 24 части. Теперь можем подумать о том, как плоскости разделяют фигуру внутри. Будут ли образовываться такие "внутренние" части, у которых нет общих точек с поверхностью?
Подсказка 3
Да, получаем, что все плоскости пересекаются в центре, при этом каждой части соответствует ровно один треугольник с поверхности. Какой мы из этого можем сделать вывод?
Каждая такая плоскость проходит через пару параллельных диагоналей противоположных граней куба. Поэтому каждая грань разбита на
а вся поверхность куба —на
треугольника, каждые два из которых отделены друг от друга хотя бы одной из
проведённых плоскостей. А поскольку все проведённые плоскости пересекаются в центре куба, то каждая часть содержит в
качестве одной из своих граней один из этих
треугольников. Следовательно, число частей разбиения также равно
Ошибка.
Попробуйте повторить позже
и
— проекции вершины
правильной треугольной пирамиды
на биссекторные плоскости двугранных углов при
рёбрах
и
Найдите тангенс каждого из этих углов, если объём пирамиды
в
раз меньше объёма пирамиды
Источники:
Подсказка 1
Сходу непонятно, что делать с условием на перпендикуляры к плоскостям, может, попытаться сделать какое-то дополнительное построение, связанное с вершиной S и одной из этих плоскостей?
Подсказка 2
Правильно, сделать симметрию точки S относительно плоскости A'BC и получить точку S₁. Попробуйте получить точки S₂, S₃ по такой же симметрии, только относительно AB'C и ABC'.
Подсказка 3
Мы получили треугольник S₁S₂S₃, кажется, что он концентричен с треугольником ABC (докажите это, используя поворот относительно высоты пирамиды).
Подсказка 4
Треугольник PSS₁ равнобедренный (P - середина BC), так как PA' - высота и биссектриса, а значит SA'=A'S₁, следовательно, пирамида SS₁S₂S₃ является образом SA'B'C' при гомотетии с коэффициентом 2 и центром в S, а значит, как относятся их объемы?
Подсказка 5
Правильно, в 8 раз. Теперь мы можем использовать условие с отношениями объемов SABC и SA'B'C', найдя отношение объемов SABC и SS₁S₂S₃ и отношение площадей их оснований.
Подсказка 6
Проведём высоту SO нашей пирамиды и найдем отношение S₁O/AO с помощью отношения площадей.
Подсказка 7
Выразим S₁O и OA через SO и найдем тангенс угла, который нужно вычислить в задаче с помощью найденных отрезков.
Точки и
симметричные
относительно биссекторных плоскостей, лежат в плоскости
А поскольку тройка этих
биссекторных плоскостей переходит в себя при повороте на
вокруг оси пирамиды, то этим свойством обладает и тройка точек
Следовательно, треугольник
— правильный, и его центр, который мы обозначим через
совпадает с центром
треугольника
Заметим, далее, что пирамида —- образ пирамиды
при гомотетии с центром
и коэффициентом
С учётом
условия задачи это означает, что отношение объёмов пирамид
и
равно
А поскольку у этих пирамид общая
высота
то и отношение площади треугольника
к площади треугольника
равно
В качестве следствия
получается равенство
которое будет нами использовано.
Обозначив величину двугранного ребра при ребре через
, точкой, симметричной
относительно соответствующей биссекторной
плоскости будем считать
Тогда где
— середина ребра
; треугольник
— равнобедренный
откуда
А поскольку
то
При левая часть последнего равенства равна
что позволяет найти
Ошибка.
Попробуйте повторить позже
Последовательность определена условиями
и
для
Найдите сумму
Подсказка 1
Нам нужно найти сумму а-шек, значит, достаточно получить такую сумму, чтобы коэффициенты при каждом a_i были одинаковыми. При этом мы видим, что если у нас есть равенство 3a₁ = a₂, 4a₂ = 2a₃, то сложив эти два неравенства, после приведения подобных мы получим 3a₁ + 3a₂ = 2a₃, и мы получаем сумму первых двух чисел с одинаковыми коэффициентами. Можно ли так сделать для суммы первых скольких-то членов? А скольких?
Подсказка 2
Верно, мы можем просуммировать так все равенства и получить, что 3(a_1 + … + a_99) = 99a_100, то есть (a_1 + … + a_99) = 33a_100. Значит, то, что мы ищем - это 34 a_100. Ну а это уже легко найти, потому что есть рекуррента. Найдите a_100 и запишите ответ.
Последовательно сложив равенства
приведя подобные члены и сократив на получим
Поэтому искомая сумма
А
поскольку
то
Ошибка.
Попробуйте повторить позже
На сторонах
и
неравнобедренного треугольника выбраны точки
и
соответственно. Биссектриса угла
и
серединный перпендикуляр к отрезку
пересекаются в точке
Известно, что
Найдите
длину отрезка
Подсказка 1
По условию треугольники AMN и MLC – равнобедренные, значит, ∠NMA = ∠BAC, а также ∠LMC = ∠BCA, что тогда можно сказать про величину угла NML? Также подумайте, как этот угол может нам помочь в дальнейшем решении.
Так как из условий следуют равенства
и
соответственно, то
Заметим, далее, что точка лежит на описанной окружности треугольника
(и делит пополам дугу
не содержащую
).
Поэтому
с учётом того, что и
лежат в одной полуплоскости относительно прямой
заключаем, что
- ортоцентр треугольника
Рассмотрим теперь треугольник Используя равенства
и равнобедренность треугольника нетрудно найти углы
и
Применив теорему синусов, получим
откуда
Ошибка.
Попробуйте повторить позже
Число таково, что неравенства
выполняются ровно при
натуральных значениях
При скольких натуральных
значениях
могут выполнятся неравенства
Подсказка 1
Пользоваться изначальным неравенством, где n стоит в показателе степени, неудобно. Предположим logₐ 2 = 𝜶 и зададим обычные ограничения на n. Если при заданном а значений n ровно 5, то как можно записать это в виде неравенства?
Подсказка 2
Верно, числа от n до n+4 принадлежат промежутку от 𝜶 до 2𝜶, при этом n-1 уже меньше 𝜶, а n+4 больше 2𝜶. Теперь попробуем преобразовать наше неравенство так, чтобы "зажать" и найти количество значений n, лежащих в промежутке от 2𝜶 до 3𝜶.
Подсказка 3
И не забудьте для каждого количества решений привести примеры!
Ясно, что Полагая
неравенство
перепишем в виде
а неравенства
- в виде
Согласно условию, для некоторого натурального числа
выполнены неравенства
Из
них следует, что
Таким образом, неравенствам обязательно удовлетворяет четвёрка чисел
и, возможно , одно
или оба числа пары
Приведём три соответствующих примера. При имеем
и
при имеем
и выполняются неравенства
наконец, если то
и
Ошибка.
Попробуйте повторить позже
Докажите, что для любого натурального существует натуральное число, которое больше своей суммы цифр в
раз.
Подсказка 1
Для каких чисел проще всего проверить делимость на число, состоящее из одних единиц?
Подсказка 2
Для чисел, состоящих из одинаковых цифр, или тех, которые получаются из вышесказанных домножением на какое-нибудь число. Попробуем найти такое число, полученное из числа, состоящего из девяток.
Подсказка 3
Найдите число с суммой цифр 9n, удовлетворяющее требованием из предыдущих подсказок.
Рассмотрим десятичную запись числа Пусть число
оканчивается на
нулей. Если последняя ненулевая цифра
числа
равна
, то у числа
последняя ненулевая цифра будет
Если предпоследняя цифра
,
то у числа
предпоследняя цифра будет
и т.д. А в начале числа
будут идти цифры числа
Далее легко видеть, что сумма цифр будет равна
.
Таким образом, условию удовлетворяет число .