Газпром - задания по годам → .03 Газпром 2021
Ошибка.
Попробуйте повторить позже
Доказать неравенство:
Подсказка 1
Нам хотелось бы как-то красиво "собрать" сумму и по возможности что-то сократить. Как можно оценить квадраты, чтобы знаменатели стали более похожими друг на друга?
Подсказка 2
Квадрат числа больше, чем произведение его на число, меньшее на единицу.
Подсказка 3
Нам хочется, чтобы многие дроби сократились. Для этого нам нужно представить наше выражение в виде разностей и сумм. Попробуем тогда выразить в виде разности выражения вида 1/(x(x+1)).
Подсказка 4
1/(x(x+1)) = 1/x - 1/(x+1). Смотрите, теперь в нашем выражении многое сокращается ;)
Перепишем неравенство в виде
Справедливо неравенство
Так как
то
Ошибка.
Попробуйте повторить позже
Эксплуатируются скважин, каждая из которых за месяц может независимо от других выйти из строя с вероятностью
Необходимая
подача нефти обеспечивается, если исправны, по крайней мере,
скважины. Какова вероятность обеспечения необходимой подачи
нефти?
Подсказка 1
Давайте поймем, какие ситуации нам подходят. Нам подходит, когда не вышло скважин из строя, когда одна и когда две. Для каждой такой ситуации мы можем посчитать ее вероятность. Если никто не вышел из строя, то понятно, что 0,9⁵. А если однавышла из строя? Что мы должны учитывать помимо расстановки вероятностей и подсчета их произведения?
Подсказка 2
Мы должны учитывать, что есть 5 ситуаций, когда вышла из строя 1 скважина, потому что это могла быть каждая из 5 скважин. Значит, когда одна скважина вышла из строя вероятность 0,9⁴ * 0,1 * 5. Какова тогда вероятность для выхода из строя сразу двух скважин? А какова тогда итоговая вероятность, которую требуют найти в задаче?
Пусть вероятность исправной работы скважины равна а вероятность выхода из строя равна
По условию задачи необходимая
подача нефти обеспечивается, если исправны хотя бы
скважины, то есть исправно работают или
или
или
скважин.
Найдем вероятность исправной работы любых скважин.
(работают первая, вторая и третья скважины, не работают четвертая и пятая скважины) или
(работают
первая, вторая и четвертая скважины, не работают - третья и пятая) или т. д. Всего таких комбинаций 10. Следовательно, вероятность
работы любых трёх скважин равна
Аналогично находим, что вероятность исправной работы четырёх скважин равна Вероятность исправной работы пяти скважин
равна
Тогда вероятность исправной работы по крайней мере трёх скважин равна
По условию известно, что вероятность выхода из строя скважины равна , тогда вероятность исправной работы скважины равна
Получим
Ошибка.
Попробуйте повторить позже
Сторона квадрата равна Середины сторон этого квадрата соединили отрезками. Получился новый квадрат. С этим квадратом поступили
так же, как и с исходным, и т. д. Найти сумму периметров этих квадратов.
Подсказка 1
Для начала хотелось бы понять, а какие значения вообще принимают периметры таких квадратов. Давайте переберём первые несколько значений и попробуем найти закономерность.
Подсказка 2
Сторона каждого следующего квадрата в √2 раз меньше стороны предыдущего, следовательно, у периметров такое же отношение. Такая последовательность напоминает какую-то прогрессию. Подумайте, как найти её сумму!
Длина стороны первого квадрата равна его периметр равен
Длина стороны второго квадрата равна
(по т. Пифагора), его
периметр равен
Длина стороны третьего квадрата равна
его периметр равен
Длина стороны четвёртого квадрата
равна
, его периметр равен
Длина стороны пятого квадрата равна
, его периметр равен
И т. д. Получим
последовательность:
Эта последовательность представляет собой бесконечно убывающую геометрическую прогрессию со знаменателем то
есть
Сумма членов бесконечно убывающей геометрической прогрессии равна
Так как
то
Ошибка.
Попробуйте повторить позже
Заданы квадраты со сторонами , для
Можно ли все квадраты, начиная со второго, уложить в первый квадрат без
наложений?
Подсказка 1
Попробуем их уложить, а в случае чего покажем, что это не удастся. Не совсем понятно, как аккуратно укладывать, если работать с квадратами по одиночке... Быть может, можно работать с ними группами?
Подсказка 2
Нам хотелось бы попробовать разбить квадраты на такие группы, чтобы для каждой группы заприметить "свой" прямоугольник, который они будут занимать в большом квадрате. Причём прямоугольники должны быть такой длины, чтобы при бесконечном суммировании получалось не больше, чем 2020.
Подсказка 3
Обратите внимание на то, что сумма обратных степеней двоек как раз равна 1!
Подсказка 4
Можно ли разбить наши квадраты на группы так, чтобы одна группа помещалась в прямоугольник с длиной 2020/2ⁿ?
Разделим квадраты на группы так, чтобы количество квадратов в группе было ровно 2 в степени номера группы:
Сумма длин сторон квадратов в -ой группе равна
Квадраты -ой группы помещаются рядом в прямоугольник с высотой
и шириной 2020. Помещая эти прямоугольники,
содержащие группы квадратов, один на другой, получим прямоугольник шириной 2020 и высотой, равной сумме высот
прямоугольников:
то есть в первый квадрат поместились без наложения все квадраты, начиная со второго.
Да
Ошибка.
Попробуйте повторить позже
Решить неравенство
Подсказка 1
Слева какое-то страшное выражение и справа какое-то страшное… Не уж-то авторы задачи хотят, чтобы мы рассматривали пять вариантов, чему принадлежит наш х, а после этого пересекали каждый раз с нашим промежутком, а потом объединяли? Надо получше подумать. Знаменатели и числители попарно друг с другом удачно связаны. Это значит, что мы можем на что-то положительное домножить, чтобы у нас левая и правая части преобразовались. На что положительное здесь было бы удобно домножить, чтобы что-то могло свернуться по формулам и у чего-то убрался модуль?
Подсказка 2
Нам надо домножить на обратную к правой части дробь. Почему она положительна? Мы знаем, что x ≠ 4, при этом, и модуль и сумма модулей тогда строго больше 0. После домножения получили справа 1, а слева только один модуль во всей дроби! А если у нас остался только один модуль, то мы можем конкретно для него уже рассмотреть всего лишь два случая знака, и для каждого случая решить очевидное неравенство методом интервалов. Значит, идейно мы всё сделали, осталось только реализовать нашу идею!
При ограничениях и
умножим обе части неравенства на положительную величину
Получим равносильное
неравенство
Выполним преобразования:
1) Пусть , тогда
Неравенство примет вид
То есть, Учитывая, что
получим
2) Пусть тогда
Неравенство примет вид
то есть Учитывая, что
, получим
Таким образом, решением исходного неравенства является
множество
Ошибка.
Попробуйте повторить позже
Три насоса разной производительности наполняли танкер нефтью. Если бы производительность первого была в раза, а третьего — в
раза больше, чем в действительности, то танкер был бы наполнен за
часов. Если бы производительность первого была в
раза, а
второго — в
раза, а третьего — в
раза больше, чем в действительности, то танкер был бы наполнен за
часа. За сколько часов
танкер наполнен в действительности?
Подсказка 1
В таких задачах на работу/движение/заполение чего-то, всегда удобно ввести параметры, через которые все выражается и дальше работать исключительно с получившейся системой. Какие здесь параметры удобно ввести?
Подсказка 2
Скорости работы и объём танкера. Тогда составим уравнения, которые следуют из условия. Какое выражение нам тогда нужно найти? А как его выразить, если мы посмотрим на уже имеющуюся систему?
Подсказка 3
Нам надо найти отношение объёма танкера к сумме скоростей заполнения. При этом два отношения уже есть. Заметим, что коэффициенты в одном (каждый из них) меньше соответствующих коэффицинтов в другом. Как тогда найти нужное нам отношение?
Обозначим объем танкера (а некоторых единицах), а производительности первого, второго и третьего насосов через
соответственно. Составим по условиям задачи два уравнения:
Пусть — число часов, за которое в действительности наполнен танкер. Получим третье уравнение:
Составим систему
уравнений:
Если найдем такие числа и
, для которых
то будет справедливо равенство:
Для нахождения чисел и
сравним в уравнении
коэффициенты при одинаковых неизвестных. Получим систему:
Решая систему, находим и
Следовательно, решая уравнение
, получим