Уравнения и сложные задачи на системы счисления (страница 3)
Сколько пятерок содержится в шестеричной записи числа \(6^{120}+216^3-55\)?
Для начала стоить отметить, что любое десятичное число A в \(n\)-ой степени можно записать как единицу и \(n\) нулей в системе счисления с основанием A: \({A^n}_{10}={1\overbrace{00...000}^n}_A\)
Так как нас просят узнать количество пятерок в шестеричной системе, представим все числа как степени шестерки и переведем 160 в шестеричную, так как это число не является степенью двойки, получим: \(6^{120}+216^3-321=6^{120}+({6^3})^3-(1\cdot6^2+3\cdot6^1+1\cdot6^0)=6^{120}+6^9-131\).
Для начала выполним сложение:
\[\begin{array}{r} + \begin{array}{r} 10..0..0000000000\\ 1000000000\\ \end{array}\\ \hline \begin{array}{r} 1\underbrace{0...0}_{109}1000000000 \end{array} \end{array}\]
Вычтем из полученного 131:
\[\begin{array}{r}
-
\begin{array}{r}
_{\cdot\,5\,5\,5\,5\,5\,5\,5\,5\,6}\\
10..01000000000\\
131\\
\end{array}\\
\hline
\begin{array}{r}
1\underbrace{0...0}_{110}555555425
\end{array}
\end{array}\\\]
Примечание: при вычитании в недесятичной системе счисления, мы занимаем не “десяток”, а само основание системы счисления. В данном примере из второй единицы (она стоит в 6 разряде) мы занимаем шесть в соседний разряд, и затем из полученной “шестерки” занимаем в следующий разряд, таким образом продолжая до разряда, под которым стоит последняя цифра другого числа, отличная от нуля.
Сколько четверок содержится в пятеричной записи числа \(5^{50}+25^3-125\)?
Для начала стоить отметить, что любое десятичное число A в \(n\)-ой степени можно записать как единицу и \(n\) нулей в системе счисления с основанием A: \({A^n}_{10}={1\overbrace{00...000}^n}_A\)
Так как нас просят узнать количество четверок в пятеричной системе, представим все числа как степени пятерки, получим: \(5^{50}+25^3-125=5^{50}+({5^2})^3-5^3=5^{50}+5^6-125\).
Для начала выполним сложение:
\[\begin{array}{r} + \begin{array}{r} 10...000..000\\ 1000000\\ \end{array}\\ \hline \begin{array}{r} 1\underbrace{0...0}_{43}1000000 \end{array} \end{array}\]
Вычтем из полученного \(5^3\):
\[\begin{array}{r}
-
\begin{array}{r}
_{\cdot\,4\,4\,5\,\,\,\,\,\,\,\,\,\,\,}\\
10...01000000\\
1000\\
\end{array}\\
\hline
\begin{array}{r}
1\underbrace{0...0}_{44}444000
\end{array}
\end{array}\\\]
Примечание: при вычитании в недесятичной системе счисления, мы занимаем не “десяток”, а само основание системы счисления. В данном примере из второй единицы (она стоит в 6 разряде) мы занимаем пять в соседний разряд, и затем из полученной “пятерки” занимаем в следующий разряд, таким образом продолжая до разряда, под которым стоит единица другого числа.
Сколько единиц в троичной записи числа \(3^{2051}+81^6+8\)?
Для начала стоить отметить, что любое десятичное число A в \(n\)-ой степени можно записать как единицу и \(n\) нулей в системе счисления с основанием A: \({A^n}_{10}={1\overbrace{00...000}^n}_A\)
Так как нас просят узнать количество единиц в троичной системе, представим все числа как степени тройки, получим: \(3^{2051}+81^6+8=3^{2051}+({3^4})^6+(2\cdot3^1+2\cdot3^0)=3^{2051}+3^{24}+(2\cdot3^1+2\cdot3^0)\). В троичной системе счисления эта запись выглядит так: \(1\overbrace{000...000}^{2051}+1\overbrace{0...000}^{24}+22\).
Далее выполняем сложение и наглядно получаем ответ:
\[\begin{array}{r} + \begin{array}{r} 10...000..0000...000\\ 1000...000\\ 22\\ \end{array}\\ \hline \begin{array}{r} 1\underbrace{0...000}_{2024}1\underbrace{0...000}_{24}22 \end{array} \end{array}\]
Сколько единиц в троичной записи числа \(3^{2019}+27^7+3\)?
Для начала стоить отметить, что любое десятичное число A в \(n\)-ой степени можно записать как единицу и \(n\) нулей в системе счисления с основанием A: \({A^n}_{10}={1\overbrace{00...000}^n}_A\)
Так как нас просят узнать количество единиц в троичной системе, представим все числа как степени тройки, получим: \(3^{2019}+27^7+3=3^{2019}+({3^3})^7+3^1=3^{2019}+3^{21}+3^1\). В троичной системе счисления эта запись выглядит так: \(1\overbrace{000...000}^{2019}+1\overbrace{0...000}^{21}+10\).
Далее выполняем сложение и наглядно получаем ответ:
\[\begin{array}{r} + \begin{array}{r} 10...000..0000...000\\ 1000...000\\ 10\\ \end{array}\\ \hline \begin{array}{r} 1\underbrace{0...000}_{1995}1\underbrace{0...000}_{21}10 \end{array} \end{array}\]
Сколько единиц в двочиной записи числа \(2^{2019}+8^5+2\)?
Для начала стоить отметить, что любое десятичное число A в \(n\)-ой степени можно записать как единицу и \(n\) нулей в системе счисления с основанием A: \({A^n}_{10}={1\overbrace{00...000}^n}_A\)
Так как нас просят узнать количество единиц в двоичной системе, представим все числа как степени двойки, получим: \(2^{2019}+8^5+2=2^{1024}+({2^3})^5+2^1=2^{2019}+2^{15}+2^1\). В двоичной системе счисления эта запись выглядит так: \(1\overbrace{000...000}^{2019}+1\overbrace{0...000}^{15}+10\).
Далее выполняем сложение и наглядно получаем ответ:
\[\begin{array}{r} + \begin{array}{r} 10...000..0000...000\\ 1000...000\\ 10\\ \end{array}\\ \hline \begin{array}{r} 1\underbrace{0...000}_{2001}1\underbrace{0...000}_{15}10 \end{array} \end{array}\]
Запись некоторого натурального десятичного числа в системах счисления с основаниями 4 и 6 оканчивается 0. Найдите минимальное возможное число, удовлетворяющее данному условию.
Если число оканчивается цифрой 0, это значит, что оно делится на основание системы счисления без остатка. Значит, необходимо найти наименьшее число, которое кратко как 4, так и 6 - это число 12.
Сколько четверок содержится в пятеричной записи числа \(5^{14}+25^3-117?\)
Для начала стоить отметить, что любое десятичное число A в n-ой степени можно записать как единицу и n нулей в системе счисления с основанием A: \({A^n}_{10}={1\overbrace{00...000}^n}_A\)
Так как нас просят узнать количество четверок в пятеричной системе, представим все числа как степени пятерки, а 117, поскольку оно не является степенью пятерки, перевдем в пятеричную систему счисления, получим:
\(5^{14}+25^3-117=5^{14}+({5^2})^3-(4\cdot5^2+3\cdot5^1+2\cdot5^0)=5^{14}+5^6-432.\)
Для начала выполним сложение:
\[\begin{array}{r}
+
\begin{array}{r}
10...000..000\\
1000000\\
\end{array}\\
\hline
\begin{array}{r}
1\underbrace{0...0}_71000000
\end{array}
\end{array}\] Вычтем из полученного 432:
\[\begin{array}{r}
-
\begin{array}{r}
_{\cdot\,4\,4\,4\,4\,4\,5}\\
10...01000000\\
432\\
\end{array}\\
\hline
\begin{array}{r}
1\underbrace{0...0}_8444013
\end{array}
\end{array}\\\] Примечание: при вычитании в недесятичной системе счисления, мы занимаем не “десяток”, а само основание системы счисления. В данном примере из второй единицы(она стоит в 6 разряде) мы занимаем пять в соседний разряд, и затем из полученной “пятерки” занимаем в следующий разряд, таким образом продолжая до последней цифры.