Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела алгебра
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 101#62507Максимум баллов за задание: 7

Решите уравнение

               ∘5-− sin2x
sinx+ cos8xcosx=  ---2---
Показать ответ и решение

Покажем выполнение следующего неравенства

               √ -  ∘-5− sin-2x
sinx+ cos8xcosx ≤  2≤   ---2---

Второе неравенство очевидно — оно следует из того, что sin2x≤ 1  . Для первого хочется применить формулу вспомогательного угла, но мешает лишний косинус. Заметим, что cos8xcosx> 0  , поскольку иначе левая часть не больше единицы и равенство невозможно. В силу симметрии мы можем рассмотреть только случай cosx> 0,cos8x> 0  , тогда выполнены неравенства

                               (              )       (     )
sinx +cos8x cosx≤ sinx +cosx⋅1= √2⋅ √1-sinx +√1-cosx = √2sin x + π ≤ √2
                                  2       2                4

Итак, неравенства доказаны, остаётся выписать условия, при которых в обоих достигаются равенства. Сделаем это по случаям

  • cosx> 0,cos8x> 0  . Здесь получаем систему

    (    (  π )           (    π
|{ sin x +4  =1         |{ x= 4πk+2πn            π
|( cos8x= 1      ⇐ ⇒   |( x= π4       ⇐ ⇒  x = 4 + 2πm
  sin 2x =1               x= 4 +πm
  • cosx< 0,cos8x< 0  . Аналогично имеем

    (|{ sin(x− π4)= 1        (|{  x= 34π+ 2πn
  cos8x =− 1     ⇐⇒      x= π+ πk     ⇐⇒   x∈ ∅
|( sin2x= 1            |(  x= 8π+ π4m
                           4

Замечание.

Быстро обосновать неравенство                √-
sinx +cos8x cosx≤  2  можно с помощью неравенства Коши-Буняковского-Шварца:

(sinx+ cos8xcosx)2 ≤ (sin2x+ cos2x)(12+ cos28x)=1 +cos28x ≤2
Ответ:

 π + 2πn, n∈ ℤ
 4

Ошибка.
Попробуйте повторить позже

Задача 102#63946Максимум баллов за задание: 7

Решите уравнение

sin(cosx) =sin (1+ sinx)
Подсказки к задаче

Подсказка 1

Равенство синусов...когда оно возможно?

Подсказка 2

Когда аргументы синуса равны или в сумме дают π (с учётом прибавления 2πk)! Рассмотрим первый случай. Так и запишем: cos(x) + 2πk= 1 + sin(x). Пока не совсем понятно, как же работать с k...попробуем его оценить! Часто в работе с тригонометрическими функциями используют какие-то неравенства, оценки - быть может, и сейчас мы сможем как-то оценить 2πk = 1 + sin(x) - cos(x), чтобы как-то найти k? С помощью чего можно это сделать(учитывая, что сами тригонометрические функции оцениваются нетрудно: |sin(x)| <= 1, |cos(x)| <= 1)

Подсказка 3

С помощью модулей! Помним правило для модуля суммы: |a+b|<= |a|+|b|. Пробуем им воспользоваться, какую тогда оценку на |2πk| получим?

Подсказка 4

|2πk|<= |sin(x)| + |1| + |cos(x)| <= 3 <= 2π, тогда несложно найти k) Остаётся решить несложное тригонометрическое уравнение и не забыть про второй случай, вытекающий из подсказки 2!

Показать ответ и решение

Для данного равенства возможны два случая.

1.

cosx= 1+ sinx+ 2πk,k ∈Z;  при этом

|2πk|= |1+sinx− cosx|≤1 +|sinx|+ |cosx|≤1+ 1+ 1< 2π

Отсюда k= 0  . Далее,

cosx =1+ sinx

cosx− sinx =1

По формуле вспомогательного аргумента

  (   π)   √2-
cos x+ 4  =  2

x= − π4 ± π4 +2πn,n∈ Z
2.

cosx+ 1+ sinx= π+ 2πk,k ∈Z

Поскольку

|cosx+ 1+ sinx|≤|cosx|+ 1+ |sin x|≤ 1+ 1+ 1< π ≤|π+ 2πk|,

то в этом случае решений нет.

Ответ:

− π ± π+ 2πn,n ∈ℤ
  4  4

Ошибка.
Попробуйте повторить позже

Задача 103#64445Максимум баллов за задание: 7

Решите уравнение

√ -
  2(sinx +cosx)cosy = 3+ cos2y
Показать ответ и решение

Преобразуем правую часть через формулу вспомогательного угла и оценим

   (   π )
2sin x +4  cosy ≤2⋅1⋅1≤ 3+ cos2y

Поскольку в неравенствах достигается равенство, то получаем систему условий

(                               (    π
||||  co⌊s2{y = −1(  π)                |||| y⌊ ={2 +πn,nπ ∈ℤ
||{  |    sin x+ 4 = 1             ||{ |    x = 4 + 2πm,m ∈ℤ
||  ||| {  cosy( =1π)           ⇐⇒   || ||| {  y =2πk3,πk∈ ℤ
||||(  ⌈    sin x+ 4 = −1            ||||( ⌈    x =− 4-+ 2πm,m ∈ℤ
        cosy =− 1                       y =π +2πn,n∈ ℤ

Первое уравнение системы не выполнено в каждом случае, тогда можно сразу написать ответ.

Ответ:

решений нет

Ошибка.
Попробуйте повторить позже

Задача 104#64604Максимум баллов за задание: 7

Решите уравнение

        4 x   4 x
sin2x= cos 2 − sin 2.
Показать ответ и решение

По формуле разности квадратов получаем

      (  2 x    2 x)( 2 x    2 x)
sin2x=  cos 2 + sin 2 cos 2 − sin 2 ⇔ 2sinx⋅cosx= cosx⇔

     π
⇔ x= 2 +πn,n ∈ℤ  или       n π
x= (−1) 6 + πn,n ∈ℤ

Ответ:

 π + πn,(−1)nπ+ πn,n∈ ℤ
 2         6

Ошибка.
Попробуйте повторить позже

Задача 105#67502Максимум баллов за задание: 7

Найдите количество целых чисел, принадлежащих множеству значений функции

f(x)= 2cos2x+ 2cosx − 2019
Подсказки к задаче

Подсказка 1

Сначала рассмотрим функцию g(x) = 2cos(2x) + 2cos(x). После применения формулы косинуса двойного угла получаем параболу относительно cos(x). Какие у нее максимум и минимум?

Подсказка 2

Верно, получается, что минимум достигается в вершине параболы, а максимум - в одном из граничных значений косинуса, т.е. в -1 и +1. Теперь поймем, что сдвиг на целое число единиц никак не меняет количество искомых нами чисел в получившемся промежутке, а значит мы уже сейчас можем дать ответ.

Показать ответ и решение

Достаточно найти область значений выражения

                  2                  2
2cos2x+ 2cosx =2(2cos x− 1)+2cosx= 2(2 cos x+ cosx− 1)

Получаем параболу, зависящую от cosx  . Её вершина находится в точке cosx = − 1
       4  , а значение в ней − 9
  4  . Отсюда легко видеть, что максимальное значение будет в одной из точек cosx= ±1  . Подставляя обе, получаем максимум 4  . На отрезке [− 9,4]
  4  лежат 7  целых чисел, это и является ответом (сдвиг на целое число его не меняет).

Ответ: 7

Ошибка.
Попробуйте повторить позже

Задача 106#67587Максимум баллов за задание: 7

Решите уравнение

               π
5arcsin(cosx)=x + 2

Источники: Физтех-2023, 11.3 (см. olymp-online.mipt.ru)

Подсказки к задаче

Подсказка 1

Видим аркфункцию, сразу стараемся избавиться от неё! Что для этого нужно сделать?

Подсказка 2

Да, достаточно перенести пятёрку вправо и взять синус от обеих частей уравнения! Таким образом, мы придём к уравнению: cos(x) = sin(x/5+π/10). Но уравнения от разных функций мы не умеем решать… Что надо сделать, чтобы уравнение стало более очевидным? И не забудьте про ограничения, когда работаете с аркфункциями!

Подсказка 3

Конечно, достаточно воспользоваться формулой приведения! То есть, sin(x/5+π/10) = cos(π/2 - (x/5+π/10)) = cos(2 π/5 – x/5). А также не забудем про ограничение на (x/5+π/10)! Поскольку это выражение равно арксинусу, то – π/2- π/10 ≤ x/5 ≤ π/2- π/10. Таким образом, мы получили, что cos(x) = cos(2π/5 – x/5). Осталось решить это уравнение, учитывая ограничения!

Подсказка 4

Верно, мы получаем, что |x| = 2π/5 – x/5 + 2πk, k ∈ ℤ. А из ограничений следует, что -3π ≤ x ≤ 2π.

Показать ответ и решение

Так как по определению

               ({ sin b=a
b= arcsina  ⇐⇒
               ( − π2 ≤ b≤ π2

То уравнение равносильно

(         (x  π )
{ cosx =sin 5 + 10
( − π ≤ x+ π-≤ π
   2   5  10  2

(          (     )
{  cosx =cos 2π5-− x5
(   3π  x   2π-
   − 5 ≤ 5 ≤ 5

({  ±x= 2π− x +2πk,k∈ℤ
(       5  5
   −3π ≤ x≤ 2π

( ⌊
|||| ⌈ x = π3 + 5π3k
{   x = 5πk-− π ,k∈ ℤ
||||        2   2
( − 3π ≤ x≤ 2π

   {     4π   π π   }
x∈  −3π;−-3 ;− 2;3;2π
Ответ:

{−3π;− 4π;− π;π ;2π}
      3   2 3

Ошибка.
Попробуйте повторить позже

Задача 107#67931Максимум баллов за задание: 7

При каком наименьшем по модулю значении параметра α  уравнение

      20(   π )      23(    π )
1234 sin  x −3  − 789cos  αx− 4  = 2023

имеет решение на отрезке [−π,π]?

Источники: Ломоносов-2023, 11.2 (см. olymp.msu.ru)

Подсказки к задаче

Подсказка 1

Из-за страшного вида уравнения можно понять, что просто преобразованиями это не решить, значит тут какая-то идея! Вот интересное замечание: 1234+789 = 2023. На что это может натолкнуть?

Подсказка 2

Можно из этого понять, что т.к. синус и косинус по модулю не превосходят 1, то максимум левой части как раз равен 2023! Теперь можно приравнять синус к ±1, а косинус к -1, и посмотреть на корни.

Подсказка 3

Выходит системка вида x = 5π/6 + πk и ax = 5π/4 + 2πn. Давайте посмотрим, когда первый корень может быть в этом промежутке.

Подсказка 4

Да, только при k = -1, 0! Осталось разобраться с альфа. Давайте подставим первый корень во второй чтобы выразить альфа через n и k) Останется только понять, при каких n и k модуль этого выражения достигнет минимума, а зная чем может быть k, это не так сложно)

Показать ответ и решение

Так как синус и косинус по модулю не превосходят 1,  а 1234+ 789= 2023,  решением уравнения может быть только такой x,  при котором входящие в уравнение синус и косинус равны соответственно ± 1  (при возведении в 20-ю степень даст 1  ) и − 1  (таким же останется при возведении в 23-ю степень).

(   (    )         (|     5π
{ sin x− π3  =±1     |{  x= 6 + πk, k∈ ℤ
( cos(αx − π )=− 1 ⇔ ||(     5π
          4           αx= 4 + 2πn, n∈ ℤ

Подставив x  из первого выражение во второе, выразим α

  (5π    )   5π           15+ 24n
α  -6 +πk  = 4-+ 2πn ⇒ α= 10+-12k, k,n∈ ℤ

Найдём возможные целые значения k,  подставив x  в условие − π ≤ x≤ π,

−π ≤ 5π +πk ≤π, k∈ℤ ⇒ k∈ {−1;0}
     6

Чтобы найти α  с наименьшим модулем, выберем n,  минимизирующее модуль числителя, (для приведенных числителей это 0  или − 1),  а также допустимое k,  максимизирующее модуль знаменателя. Нетрудно заметить, что это n= −1  и k =0,  поэтому получаем

α= −9-= −0,9
   10
Ответ:

− 0,9

Ошибка.
Попробуйте повторить позже

Задача 108#67951Максимум баллов за задание: 7

Решите уравнение

   √-                 √-                   2(   π )
1−  2 cosx(sinx+ 2cosx)+  2sinx(2sinx − cosx) =2sin x + 8

Источники: ПВГ-2023, 10.1 (см. pvg.mk.ru)

Подсказки к задаче

Подсказка 1

Справа внутри синуса есть какой-то π/8, что не очень приятный угол, а еще там сам синус в квадрате. Чем можно воспользоваться в таком случае?)

Подсказка 2

Например, формулой понижения степени! Тогда там появится 1-cos(2x+π/4), что уже лучше. Раз мы тут преобразовали к двойному углу, то может слева так тоже выйдет?

Подсказка 3

Если раскрыть скобки в левой части, то получится 2√2(sin²x-cos²x) - 2√2sinx⋅cosx, что очень хорошо раскладывается на двойные углы) Осталось достаточно приятное уравнение, которое не доставит вам проблем)

Показать ответ и решение

Раскроем скобки и в правой части воспользуемся формулой понижения степени:

   √-          √-  2    √ -  2   √-              (    π)
1−  2cosxsinx− 2 2cosx +2  2sin x−  2sinxcosx= 1− cos 2x+ 4 ;

 √-              √-            1         1
2 2(sin2x− cos2x)− 2 2 sinxcosx = −√2-cos(2x)+ √2-sin(2x);

Домножим на  √ -
(−  2)  и выделим формулы двойных углов:

4cos(2x)+ 2sin(2x) =cos(2x)− sin(2x);

sin(2x)=− cos(2x);

Если cos(2x)= 0,  то получим, что sin(2x)=0,  что противоречит основному тригонометрическому тождеству. Значит, можно поделить на cos(2x),  имеем:

tg (2x)= −1.

Откуда x= − π8 + πn2 ,n ∈ℤ

Ответ:

− π + πn,n ∈ℤ
  8  2

Ошибка.
Попробуйте повторить позже

Задача 109#68021Максимум баллов за задание: 7

Тройка действительных чисел A,B,C  такова, что

sinA +sinB + sinC =0

и

cosA+ cosB+ cosC = 0

Найти значение выражения

cos(A − B)+ cos(B − C)+cos(C − A )

Источники: Всесиб-2023, 11.2 (см. sesc.nsu.ru)

Подсказки к задаче

Подсказка 1

Мы знаем, что в формуле разности косинусов есть произведение синусов и произведение косинусов...А у нас есть условие на суммы синусов и суммы косинусов..Что можно сделать с ними?

Подсказка 2

Возвести в квадрат! В одном выражении будут все попарные произведения синусов, а в другом - косинусов. И тогда остается свернуть эти два выражения в нужное нам)

Показать ответ и решение

Возведём в квадрат каждое из двух уравнений:

({  sin2A+ sin2B +sin2C +2 sinAsin B+ 2sinB sinC +2sin AsinC = 0

(  cos2A+ cos2B + cos2C+ 2cosAcosB + 2cosB cosC +2 cosAcosC =0.

Сложим эти уравнения, используя sin2α +cos2 α= 1,cos(α− β)= cosα cosβ+ sinα sinβ.  Получим:

3+2(cos(A− B)+ cos(B− C)+ cos(C− A))=0

                               3
cos(A− B)+ cos(B− C)+ cos(C− A)= −2.
Ответ:

− 3
 2

Ошибка.
Попробуйте повторить позже

Задача 110#68075Максимум баллов за задание: 7

Решить уравнение

(  4    )(  4     )     2     2
 sin 5x+ 1 sin 3x+ 1 = 4sin 5x⋅sin 3x.

Источники: Росатом-2023, 11.2, Москва (см. olymp.mephi.ru)

Подсказки к задаче

Подсказка 1

Мы видим, что относительно замены a=sin^2(5x), и b=sin^2(3x) уравнение симметрично. Попробуйте оценить каждую из скобок снизу по отдельности и подумать, что это дает(размышления про симметрию нужны, так как, вероятно, нужно как-то по одному алгоритму оценивать каждую из скобок).

Подсказка 2

Верно, мы можем оценить, что первая скобка - это хотя бы 2sin^2(5x), а вторая - хотя бы 2sin^2(3x) (так как t^2+1>=2t - по неравенству о средних или просто можно перенести в левую часть все). Значит, левая часть почти всегда больше или равна правой. Что это дает нам? Какая система из этого следует?

Подсказка 3

Действительно, у нас выходит, что sin^2(3x)=sin^2(5x)=1 А это значит, что |sin(3x)|=1=|sin(5x)|. Остается решить эту систему и получить ответ.

Показать ответ и решение

Выполним равносильные преобразования в исходном уравнении:

  4     4     4      4          2     2
sin 5x ⋅sin 3x +sin 5x+ sin 3x+ 1− 4sin 5x⋅sin 3x = 0

(sin45x⋅sin43x− 2sin25x⋅sin23x+ 1)+ (sin45x − 2sin25x ⋅sin23x +sin43x)= 0

(sin25x⋅sin23x− 1)2+ (sin25x − sin23x)2 = 0

Сумма неотрицательных слагаемых равна нулю тогда и только тогда, когда каждое слагаемое равно нулю. Тогда

(
{sin25x⋅sin23x− 1= 0
(sin25x− sin23x= 0

Учитывая ограниченность синуса, имеем

(             (     π       (    π   πn
{ |sin5x|=1    |{ 5x= 2 +πn   |{ x= 10 +-5 ,n ∈ℤ
( |sin3x|=1  ⇔ |( 3x= π +πm ⇔ |( x= π + πm-,m ∈ℤ
                    2            6   3

Далее находим пересечение серий

                             ({
π-+ πn = π+ πm-⇔ 3n− 5m =1 ⇔  n =2 +5k ,k ∈ℤ
10   5   6   3               (m = 1+3k

Окончательно получаем    π
x= 2 + πk,k ∈ℤ

Ответ:

 π + πk,k ∈ℤ
 2

Ошибка.
Попробуйте повторить позже

Задача 111#68259Максимум баллов за задание: 7

Решите неравенство

2cos(cosx)> 1

Источники: БИБН-2023, 11.1 (см. www.unn.ru)

Подсказки к задаче

Подсказка 1

Попробуйте использовать тот факт, что cosx принимает значения от -1 до 1.

Подсказка 2

Посмотрите, может ли как-то помочь в решении неравенства область допустимых значений cos(cosx)?

Подсказка 3

Сравните наименьшее значение cos(cosx) и 1/2.

Показать ответ и решение

Первое решение.

Так как

 π               π
−3 < −1≤ cosx ≤1 <-3,

то неравенство верно для любого x,  поскольку тогда

− π3 < cosx < π3 =⇒  cos(cosx)> 12

Второе решение.

Как известно, cosx∈ [− 1,1],  откуда cos(cosx)∈[cos(cos1),1].  Осталось показать, что

2coscos1> 1  ⇐⇒   coscos1>1∕2⇐ coscos1 >cos1> cosπ∕3= 1
                                                  2

То есть неравенство выполнено для всех x.

Ответ:

 x ∈ℝ.

Ошибка.
Попробуйте повторить позже

Задача 112#69372Максимум баллов за задание: 7

Решите уравнение

 4     tgx       x4
(x − 2)(2   − 1)+ (3 − 9)tgx =0

Источники: Звезда - 2023 (см. zv.susu.ru)

Подсказки к задаче

Подсказка 1

"По-нормальному" мы это уравнение точно не решим, поэтому давайте вспоминать все хитрости, которые у нас есть. В уравнение мы видим похожие конструкции в обоих слагаемых. Попробуйте ещё получше преобразовать tg(x), 3^x⁴-9 и 2^{tg x}-1, чтобы они стали совсем идентичными. Как тогда их можно связать между собой?

Подсказка 2

Верно, если записать tg(x)=tg(x)-0, 2^{tg x}-1=2^{tg x}-2^0 а 3^x⁴-9=3^x⁴-3^2, то это всё намекает посмотреть на уравнение с точки зрения функции. А справа у нас ноль. То есть хорошо бы было просто сказать, что каждое из слагаемых равно нулю. Но у нас может быть такое, что одно положительное, а другое отрицательное... Или не может? Попробуйте понять, почему у нас два слагаемых обязательно одного знака.

Подсказка 3

Верно, можно сказать, что мы сравниваем два числа и степени 3 и 2 возведённые в них. Тогда из-за возрастания 3^x и 2^x знак в таких скобках будет совпадать в скобках с просто выражениями x⁴ и 2 или tg(x) и 0. Всё, теперь можем уже "законно" сказать, что каждое из слагаемых должно быть равно нулю и доделать задачу!

Показать ответ и решение

Функции y = 2t  и y = 3t  - возрастающие, следовательно, выражение 3x4 − 9= 3x4 − 32  имеет такой же знак, как и  4
x − 2  , а выражение  tgx      tgx  0
2   − 1= 2  − 2  имеет такой же знак, как и tgx− 0= tgx  . Таким образом, слагаемые в левой части уравнения - одного знака, равенство нулю возможно лишь в том случае, когда один из множителей равен нулю. Имеем

[  4
  x − 2= 0
  tgx= 0

Решая эти уравнения, получаем ответ.

Ответ:

±√42;πn,n∈ ℤ

Ошибка.
Попробуйте повторить позже

Задача 113#70336Максимум баллов за задание: 7

Найдите все корни уравнения

   ( 2   ) ( 4    2  )
8x⋅2x − 1 ⋅8x − 8x +1 = 1,

удовлетворяющие условию 0< x< 1  .

Показать ответ и решение

Ограничения на x  намекают на замену x= cosα, α∈ (0;π)
             2

По формуле двойного и половинного угла

      (   2    )
8 cosα⋅ 2cosα − 1 = 8cosα⋅cos2α;

   4       2         2
8cos α− 8cos α+ 1= 2cos 2α+ 4cos2α +2− 4cos2α − 4 +1=

=2cos22α− 1= cos4α;

Тогда исходное равенства примет вид

8cosα⋅cos2α ⋅cos4α= 1

Домножим на sinα ⁄=0

8cosα ⋅sinα⋅cos2α ⋅cos4α= sinα

4sin2α⋅cos2α ⋅cos4α= sinα

2 sin4α⋅cos4α =sinα

sin8α= sinα

    7α    9α
2sin 2 ⋅cos2 = 0

[ 7α
  92α =πkπ
   2 = 2 + πn

Ввиду ограничения 0< α< π
      2  получаем

⌊ α = 2π-       ⌊ x =cos2π
|⌈ α = 7π    =⇒  |⌈ x =cosπ7
  α = 9π          x =cos9π = 1
      3                3   2
Ответ:

 1; cos2π; cosπ
2     7    9

Ошибка.
Попробуйте повторить позже

Задача 114#71245Максимум баллов за задание: 7

Решите уравнение:

8cosx cosycos(x− y)+1 =0
Подсказки к задаче

Подсказка 1

Пока не очень понятно, как это решать, поэтому надо это уравнение преобразовать. Какую формулу можно применить?

Подсказка 2

Верно, формулу для произведения косинусов! У нас получается квадратное уравнение относительно cos(x - y), поэтому что можно найти?

Подсказка 3

Можно посчитать дискриминант и увидеть в нём кое-что красивое или же попробовать выделить полный квадрат в левой части уравнения :)

Подсказка 4

Получили систему уравнений на косинусы, остаётся только её решить и найти x и y. И так как мы пользовались оценкой, что нужно не забыть сделать?

Подсказка 5

Конечно, проверить подстановкой, подходят ли нам найденные решения!

Показать ответ и решение

По формуле произведения косинусов получаем уравнение

4(cos(x− y)+ cos(x+ y))cos(x− y)=− 1,

Выделим полный квадрат и сделаем оценку обеих частей

                      2    2
0 ≤(2cos(x− y)+cos(x+ y)) = cos (x +y)− 1≤ 0

По методу оценки уравнение равносильно системе

{ 2cos(x− y)+ cos(x+ y)=0
  cos2(x +y)− 1= 0

Если

cos(x+ y)= 1  ⇐⇒   y = −x+ 2πn,n ∈ℤ,

то из первого уравнения системы cos(x− y)= − 12,  а из исходного уравнения

8cosxcosx⋅(− 1)= −1  ⇐⇒   cosx =± 1  ⇐⇒   x= ± π+ πk,k ∈ℤ
           2                   2            3

Если

cos(x+ y)= −1  ⇐ ⇒  y =π − x +2πn,n∈ ℤ,

то из первого уравнения системы cos(x− y)= 12,  а из исходного уравнения

8cosx⋅(− cosx)⋅ 1 =− 1 ⇐⇒   cosx= ± 1  ⇐⇒   x= ±π +πk,k∈ ℤ
             2                   2           3

Объединяя серии, получаем ответ.

Ответ:

(π+ πk;− π +πn),(− π+ πk;π+ πn),n∈ ℤ,k ∈ℤ
 3      3         3     3

Ошибка.
Попробуйте повторить позже

Задача 115#72145Максимум баллов за задание: 7

Докажите, что sinx + 1 sin2x+ 1sin3x+ ...+ 1 sinnx> 0
     2       3          n  при 0 <x < π.

Подсказки к задаче

Подсказка 1

Чем мы пользуемся, когда хотим доказать какое-то утверждение для произвольного n ∈ ℕ ?

Подсказка 2

Индукцией! Давайте тут её применим. Записываем базу и начинаем работать с шагом индукции. Пусть для n - 1 всё работало, рассматриваем n. И что нужно доказать, чтобы сделать вывод, что f_n(x) > 0 во всех точках х из интервала?

Подсказка 3

Нужно доказать, что минимум f_n(x) > 0! Пусть минимум достигается в точке x₀, тогда как будет вести себя функция в окрестности точки x₀? Что мы можем сказать про f'(x₀)?

Подсказка 4

Конечно, f'(x₀) = 0! Тогда можем посчитать производную в точке x₀ и постараться упростить это выражение (вспомните про телескопы!) Но попробуйте не в лоб складывать косинусы, а ещё на кое-что домножить, чтобы потом воспользоваться другой формулой

Подсказка 5

Предлагается домножить на sin(x₀/2) (≠ 0, что важно!) и ещё на 2, чтобы потом не пришлось писать 1/2, когда пользуемся формулой sinα ⋅ cosβ.

Подсказка 6

Расписываем и сокращаем, получаем короткую формулу для 2 ⋅ sin(x₀/2) ⋅ f'_n(x₀) и это равно 0 ⇒ .... (подумайте, зачем нам надо было sin(x₀/2) ≠ 0). И вот мы знаем, что для n - 1 f(x) было > 0, что тогда нам хотелось бы показать, чтобы для n f(x) тоже было > 0 ?

Подсказка 7

Хотим, чтобы слагаемое, которое добавляем к f_{n-1} для получения f_n, было ≥ 0. У нас было sin((n + 1/2)x₀) = sin(x₀/2), а чему равна разность этих аргументов?

Подсказка 8

Она равна n ⋅ x₀! Тогда мы можем расписать наш "добавочный" sin(nx₀) как синус разности аргументов! А чему это будет равно? Чтобы это понять, подумайте, как соотносятся косинусы тех аргументов, если их синусы равны

Подсказка 9

Косинусы будут равны по модулю! Тогда наш sin(nx₀) будет равен либо 0, либо 1/n ⋅ sin(x₀) > 0! Победа, мы доказали шаг индукции, а значит доказали, что f(x) > 0 для любого х!

Показать доказательство

Применим индукцию по n  . При n =1  неравенство очевидно. При n= 2  получаем sinx+ 1sin 2x = sinx(1+ cosx)
     2  . Ясно, что sinx >0  и 1+cosx> 0  при 0< x< π.

Предположим, что              1           -1-
fn−1(x)= sinx+ 2sin2x+...+ n− 1sin(n − 1)x> 0  при 0 <x <π  . Покажем, что тогда               1
fn(x)= fn−1(x)+ nsin nx> 0  при 0 <x < π  . Пусть x0  — точка отрезка [0,π]  , в которой функция fn(x)  принимает минимальное значение. Предположим, что fn(x0)≤0  , причём x0 ⁄= 0  и x0 ⁄= π  . Тогда  ′
fn(x0)= 0  . Ho

                               sin(n+ 1)x − sinx0
f′n (x0)= cosx0+ cos2x0+ ...+ cosnx0 =------2--0x0-----2-
                                     sin 2

Докажем тождество

                      sin(n+-12)x-− sin-x2
cosx+cos2x+ ...+cosnx=       sinx2

Пусть сумма косинусов равна S  . Домножив на 2sin x2 ⁄= 0  получим

2S sinx =2cosxsinx + 2cos2xsin x+ ...+ 2cosnxsin x=
     2          2          2              2

  (   3x-    x)  (   5x     3x)         (  (2n+-1)x     (2n-− 1)x)
=  sin 2 − sin2  +  sin 2 − sin 2 + ......+  sin   2    − sin   2    =

  (2n+ 1)x     x
sin---2--- − sin 2

Поэтому в силу тождества   (    )
sin n + 12 x0 =sin x02  , а значит, |  (    )  |
|cos n+ 12 x0|=cosx20  . Далее,

                           (  (     )           (     )      )
fn(x0)− fn−1(x0) = 1sinnx0 = 1 sin n + 1 x0cosx0− cos n + 1 x0sinx0
                 n       n         2      2          2      2

Полученное выражение равно 0  или -2sinx0cosx0= 1 sinx0 > 0
n    2   2   n  . Таким образом, fn(x0)− fn−1(x0)≥ 0  , а значит, fn−1(x0)≤ fn(x0) ≤0  . Получено противоречие.

Ошибка.
Попробуйте повторить позже

Задача 116#76752Максимум баллов за задание: 7

Решите уравнение

  2    sinx       x2
(x − 2)(2   − 1)+ (2 − 4)sinx= 0
Показать ответ и решение

Заметим, что знак выражения x2− 2  совпадает со знаком выражения 2x2 − 22  по методу рационализации. Также знак выражения  sinx  совпадает со знаком выражения  sinx  0
2   − 2 .  Следовательно знаки произведений совпадают. А значит, чтобы выполнялось равенство нулю, нужно, чтобы хотя бы одно из произведений равнялось нулю.

[  2
  x − 2= 0
  sinx =0

Решив совокупность, получаем ответ. Легко проверить, что при этом в обеих слагаемых получаются нулевые произведения.

Ответ:

±√2; πn, n∈ ℤ

Ошибка.
Попробуйте повторить позже

Задача 117#77204Максимум баллов за задание: 7

Решите уравнение

              2
2arccosx− arccos(x +2x− 1)=sinx− arcsinx
Показать ответ и решение

ОДЗ:

{ −1 ≤x ≤1,                      √-
       2           ⇒   0≤ x≤ −1+  3.
  −1 ≤x + 2x− 1≤1

Используем формулу arcsinx+ arccosx = π:
                2

π               2
2 + arccosx − arccos(x + 2x− 2)=sin x

Заметим, что корень x= π  - подходит. Докажем, что других нет, используя монотонность. Пусть

     π                2
f(x)= -2 + arccosx− arccos(x + 2x− 2)− sinx

Тогда для доказательства, что она монотонная будем использовать производную.

          1                  1
f(x)′ = −√---2-+(2x+ 2)⋅∘-----2-------2-− cosx.
         1− x           1− (x + 2x− 2)

Докажем, что производная положительная, т.е. докажем следующую оценку при данных ограничениях:

(2x+ 2)⋅∘------1-------> cosx+ √--1-2-
        1 − (x2+2x − 2)2       1− x

Оценим правую часть:

({ cosx <1
  ---1--                  √-
( √1-− x2 <2, при x∈ [0;−1+  3]

Тогда правая часть не больше 3.

Оценим левую часть:

       1
∘-----2-------2 > 1, т.к. мы делим 1 на число меньшее, чем 1
 1− (x +2x − 2)

при x∈ [0;−1+ √3].  Значит хочется доказать, что 2x+ 1> √-1---
        1− x2  (одну единицу мы взяли для оценки косинуса), т.к. тогда если это верно, то верно что и левая часть больше правой.

Доказательство:

       ---1--     2           2
2x+ 1> √1-− x2 ⇒ (4x + 4x+ 1)(1− x )> 1

−4x4− 4x2+ 3x2+4x> 0.

Ввиду ограничения на          √-
x∈ [0;−1+  3],  получаем:

{      3                          √-
  4x>2 4x4− это верно для всех x∈ [0;−1+ 3]
  3x − 4x > 0

  2    4      2     2
3x − 4x > 0⇒ x (3− 4x )>0.

Подставим x =−1 +√3-  во второй множитель последнего неравенства:

          √-2        3 2     9
3− 4⋅(−1+  3) >3 − 4⋅(4) = 3− 4 > 0− верно

Значит при всех          √ -
x ∈[0;−1 +  3]  верно что

       --1---
2x+ 1> √1−-x2

Тогда функция монотонная и имеет один корень x= π.

Ответ:

 π

Ошибка.
Попробуйте повторить позже

Задача 118#88918Максимум баллов за задание: 7

а) Решите уравнение cosx⋅cos2x= √2 sin2x+ cosx.

б) Найдите все корни этого уравнения, принадлежащие отрезку [ 5π    ]
 −-2 ;− π .

Источники: ЕГЭ 2023, основная волна, Адыгея

Подсказки к задаче

Пункт а, подсказка 1

Что сразу бросается в глаза? Попробуйте это сделать

Пункт а, подсказка 2

Верно! Косинус двойного угла (удобно воспользоваться cos 2x = 1 - 2(sin x)^2). Приводим подобные слагаемые. Что дальше можно сделать?

Пункт а, подсказка 3

Выносим общий множитель! Произведение равно 0, а такое мы много раз решали

Пункт б, подсказка 1

Отбираем корни удобным для вас способом (через двойное неравенство или тригонометрическую окружность)

Показать ответ и решение

а) Воспользуемся формулой cos2x= 1− 2sin2x  и получим

cosx (1 − 2 sin2x)= √2 sin2x+ cosx
   √ -  2       2
     2sin x( +2 sin xco)sx= 0
     sin2x √ 2+ 2cosx  = 0

Отсюда получаем

⌊                  ⌊
 sin x= 0;           x= πk;
|⌈        √-    ⇔   |⌈               где k ∈ℤ
 cosx= − -2,        x= ± 3π+ 2πk,
         2               4

б) С помощью тригонометрической окружности отберём корни.

−−−−− 52 3 5πππππ+ 2πk
 244

Таким образом, подходят корни − 2π;   5π
− 4 ;  − π.

Ответ:

а) πk;  ± 3π +2πk,
   4  k ∈ ℤ

 

б) − 2π;    5π
− 4-;  − π

Ошибка.
Попробуйте повторить позже

Задача 119#89777Максимум баллов за задание: 7

Решите уравнение

tg-2x-+2cosx
tg 2x − 2cosx = 0.

Источники: ДВИ - 2023, вариант 237, задача 4 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

Запишите ОДЗ. Чтобы сократить себе труд по решению уравнения "знаменатель = 0", попробуйте записать двойное равенство: "знаменатель" = "числитель" = 0. Сделайте из этого вывод: в каком случае у числителя и знаменателя есть общие корни, то есть какие из корней числителя не подходит под ОДЗ?

Подсказка 2

Приравняем к нолю числитель: тангенс двойного угла можно записать как отношение синуса к косинусу. После этого приведите выражение к общему знаменателю.

Подсказка 3

Распишите синус двойного угла по известной формуле, тогда можно будет вынести общий множитель, какой он?

Подсказка 4

В скобках осталось выражение, зависящее от sin(x) и от двойного угла, что с ним ещё можно сделать? Попробуйте раскрыть синус двойного угла по формуле!

Подсказка 5

Осталось приравнять к нулю получившиеся множители, проверить их на соответствие ОДЗ и записать ответ!

Показать ответ и решение

Выражения tg 2x +2cosx  и tg2x − 2cosx  отличаются на 4cosx  , стало быть, если они одновременно равны нулю, то cosx= 0  . Легко убедиться, что обратное тоже верно. Стало быть, множество решений исходного уравнения совпадает с множеством нулей выражения tg2x+  2cosx  , из которого исключены нули cosx  . Преобразуем это выражение:

            2cosx(sinx +cos2x)
tg2x +2cosx= ------cos2x----- =

        (   2         )               (     1)
= −2cosx-2sin-x−-sinx−-1-= −4cosx(sinx−-1)-sinx-+2-.
          cos2x                    cos2x

Если sinx =1  , то cosx= 0  , стало быть, множество решений исходного уравнения совпадает с множеством нулей выражения sinx+ 12  , из которого исключены нули cos2x  . Ho sin x+ 12  и cos2x  одновременно нулю не равны, поскольку если sinx= − 12  , то cos2x= 1− 2sin2x= 12  . Следовательно, исходное уравнение равносильно уравнению sinx =− 12  . То есть x= (−1)k π6+  (k+ 1)π,k∈ ℤ  .

Ответ:

 (−1)kπ+ π(k +1), k∈ ℤ
     6

Ошибка.
Попробуйте повторить позже

Задача 120#90037Максимум баллов за задание: 7

Решите уравнение

        cosx−-cos3x-
2cos2x+ cosx+ cos3x = 2.

Источники: ДВИ - 2023, вариант 236, задача 4 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

Что можно сделать с суммой и разностью косинусов во втором слагаемом? Попробуйте применить формулы преобразования суммы в произведение.

Подсказка 2

На этом этапе удобно записать и решить ограничения!

Подсказка 3

Получившееся после преобразования уравнения второе слагаемое, удобно записать через тангенсы. А как нам выразить через тангенс косинус двойного угла?

Подсказка 4

Чтобы cos(2x) выразить через тангенс, удобно воспользоваться формулой косинуса двойного угла, а затем вспомнить, что 1 + tg²(α) = 1/cos²α, выразите отсюда косинус и подставьте в исходное уравнение.

Подсказка 5

Осталось воспользоваться формулой для tg(2x) и мы получим рациональное уравнение относительно tg(x). Решите его и не забывайте про ОДЗ!

Показать ответ и решение

Применим формулы суммы и разности косинусов:

cosx− cos3x= −2sin 2x sin(−x)= 2sin2xsinx

cosx+ cos3x= 2cos2xcosx

Преобразуем равенство из условия:

2cos2x+ sin2xsinx-= 2
        cos2xcosx

Запишем ОДЗ:

2cos2xcosx⁄= 0

{
  x ⁄= π2 + πk,k ∈ℤ
  x ⁄= π4 + πn2 ,n∈ ℤ

Продолжим преобразования равенства из условия:

2cos2x+ tg2x⋅tgx =2

Применим формулу косинуса и тангенса двойного угла:

             2tg2x
2(2cos2x − 1)+ 1−-tg2x-= 2

Сократим равенство на 2  и вспомним, что cos2x= tg12x+1.

              2
--22---− 1+ -tg-x2--=1
tg x+ 1     1− tg x

2(tg2x-− 1)−-tg2x(tg2x-+1)
        tg4x − 1       = 2

− tg4x +tg2x− 2
----tg4x-− 1---= 2

−-3tg4x-+tg2x= 0
   tg4x − 1

(| tg4x− 1⁄= 0
|||{ ⌊ tgx= 0
| || tgx= √1-
|||( ⌈        31√-
    tgx= −  3

С учетом ОДЗ получаем ответ:

⌊ x =πk
|⌈ x = π + πk
  x =−6π+ πk
       6
Ответ:

 πk;±π + πk; k∈ ℤ
    6

Рулетка
Вы можете получить скидку в рулетке!