Тема Курчатов

Планиметрия на Курчатове

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела курчатов
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#68028

Дан параллелограмм ABCD  такой, что ∠A = 60∘.  Пусть P  и Q  — середины сторон BC  и CD  соответственно. Оказалось, что точки A,P,Q,D  лежат на одной окружности. Найдите ∠ADB.

Источники: Курчатов-2023, 11.4 (см. olimpiadakurchatov.ru)

Подсказки к задаче

Подсказка 1

Давайте попробуем понемногу раскручивать задачу. В планиметрии важно, что если есть какие-то не связанные между собой объекты, то надо их связать, потому что иначе работать с ними будет тяжело. Поэтому какой отрезок здесь у нас связан с картинкой минимально? Как можно это исправить?

Подсказка 2

Верно, PQ почти никак не причастен к конструкции. Давайте продлим его на такое же расстояние до пересечения с AD в точке T. Получим известную конструкцию с параллелограммом. Тогда наш искомый уголок можно перекинуть, и тогда нужно найти ∠ATP = ∠ADB. Какой ещё факт можно вспомнить теперь с точкой T, ещё учитывая вписанный четырёхугольник? А какие углы будут у него?

Подсказка 3

Да, мы ведь можем записать теорему о равенстве произведений отрезков секущих. То есть на самом деле мы можем выразить сторону PT через AT. Также ∠APT = 60 из вписанности. Получается, на самом деле в треугольнике APT мы знаем один из углов и две стороны. Остаётся только найти угол ATP любым удобным способом. Например, можно опустить высоту из T и найти неизвестный угол как сумму двух составляющих.

Показать ответ и решение

PIC

Пусть M  — середина стороны AD.  Продлим луч P Q  до точки T  такой, что PQ =QT.  Так как диагонали четырёхугольника P CTD  пересекаются в своих серединах, это параллелограмм; отсюда получаем, что точка T  лежит на прямой AD  и DT = CP =DM.

Отметим, что DBP T  — параллелограмм (DT  равен и параллелен PB ),  поэтому искомый ∠ADB = ∠ATP.  С другой стороны, из вписанности APQD  имеем

∠AP Q =180∘− ∠ADQ = 60∘.

Кроме того, PM  — средняя линия ABCD,  и параллельна сторонам AB  и CD,  откуда получаем          ∘
∠PMT = 60 .  Значит, треугольники AT P  и PTM  подобны по двум углам. Тогда AT :P T = PT :MT,  то есть    2
P T = AT ⋅MT.

Введём масштаб длин на чертеже так, чтобы отрезок AM  имел длину 1;  тогда AT = 3  и MT = 2,  а     √ -
PT =  6.  Мы знаем один из углов треугольника MP T  и две его стороны; теперь можно воспользоваться любым из известных методов, чтобы вычислить остальные его элементы (включая искомый угол ATP ).  Например, опустим высоту TH  на прямую MP.  Так как TP >T M,  отрезки TP  и TM  окажутся по разные стороны от прямой T H.  В прямоугольном треугольнике MT H  гипотенуза равна 2,  а угол напротив катета TH  равен 60∘,  то есть сам катет равен √-
 3.  Теперь ясно, что прямоугольный треугольник THP  равнобедренный, так как отношение гипотенузы к катету в нём равно √-
 2.  Получаем ∠AT P = 30∘+ 45∘ = 75∘.

Ответ:

 75∘

Ошибка.
Попробуйте повторить позже

Задача 2#70784

Точка P  внутри остроугольного треугольника ABC  такова, что ∠BAP =  ∠CAP.  Точка M  — середина стороны BC.  Прямая MP  пересекает описанные окружности треугольников ABP  и ACP  в точках D  и E  соответственно (точка P  лежит между точками M  и E,  точка E  лежит между точками P  и D).  Оказалось, что DE  =MP.  Докажите, что BC = 2BP.

Источники: Курчатов-2022, 11.5 (см. olimpiadakurchatov.ru)

Подсказки к задаче

Подсказка 1

У нас в задаче есть условие на углы и описанные окружности. Может, попробовать посчитать уголочки. Посмотрите, куда можно перекинуть уголочки ∠CAP и ∠BAP...

Подсказка 2

Т.к. DAPB- вписан ⇒ ∠PAB=∠PDB. Т.к. AEPC- вписан ⇒ ∠CAP=∠CEP. Но тогда ∠CEP=∠PDB. Это все, конечно, здорово, но мы пока не подобрались к отрезку BP. Нам нужно доказать, что BC=2BP. Это равносильно тому, что BP=BM. Т.е. нам надо доказать, что PBM- равнобедренный. Может, попробовать провести высоту BX и доказать, что PX=XM...

Подсказка 3

Мы еще не пользовались тем, что M- середина BC. Какое дополнительное построение сразу приходит в голову?

Подсказка 4

Конечно, удвоение медианы! Давайте удвоим XM: тогда получится точка Y, лежащая на прямой XM. Тогда т.к. BXCY-параллелограмм ⇒ ∠CYM=90° и CY=BX. Равны ли прямоугольные треугольники △DBX и △ECY?

Подсказка 5

Да! Т.к. CY=BX и ∠BDX=∠BDP=∠CEP=∠CEY. Но тогда DX=EY. Если мы докажем, что PX=MY, то мы победили. Вспомните, что DE=PM и доведите решение до конца!

Показать доказательство

PIC

Четырёхугольник AEP C  — вписанный, поэтому ∠CAP = ∠CEP.  Аналогично четырёхугольник BP AD  — вписанный, поэтому ∠BDP  =∠BAP  =∠CAP  =∠CEP.

Опустим высоты BX  и CY  на прямую MP.  Заметим, что прямоугольные треугольники BMX  и CMY  равны по гипотенузе BM  =MC  и острому углу ∠BMX  = ∠CMY  , откуда получаем BX = CY.

Заметим, что прямоугольные треугольники CY E  и BXD  равны по катету CY =BX  и острому углу ∠CEY  =∠CEP  =∠BDP  = ∠BDX,  откуда получаем Y E = XD.  Тогда

0= YE − XD =(YM + MP + PE)− (XP +P E+ ED )=Y M − XP

Получается, что XP = YM  =XM.  Следовательно, в треугольнике BP M  высота BX  совпадает с медианой, поэтому он является равнобедренным, и BP = BM = BC-,
           2  что и требовалось.

Ошибка.
Попробуйте повторить позже

Задача 3#92430

В первой четверти координатной плоскости отметили две точки A  и B  с целочисленными координатами. Оказалось, что          ∘
∠AOB  =45 , где O  — начало координат. Докажите, что хотя бы одна из четырёх координат точек A  и B  — чётное число.

Источники: Курчатов - 2021, 11.3 (см. olimpiadakurchatov.ru)

Подсказки к задаче

Подсказка 1

Как мы можем связать угол и координаты этих точек? Через скалярное произведение. Запишите его и подумайте над тем, что с ним можно сделать, если знать, что все координаты - целые числа.

Подсказка 2

Мы можем возвести в квадрат, чтобы избавиться от иррациональности. Теперь положим, что все числа нечётные. Что нам это даёт? Какой остаток по модулю 4 дает любой нечётный квадрат? А что тогда можно сказать про степень вхождения двойки в левую и правую части?

Показать доказательство

Пусть точка A  имеет целочисленные координаты (a;b)  , а точка B  (c;d)  . Запишем скалярное произведение векторов −O→A (a;b)  и −−→
OB (c;d)  двумя способами: через координаты и через угол между ними.

        −→  −−→   −→   −−→        ∘ ------∘ ------ 1
ac+ bd= OA⋅OB = |OA |⋅|OB |cos45∘ =  a2+ b2⋅  c2+d2⋅√2-, откуда
                       2  ( 2  2)( 2  2)
                2(ac+bd) = a + b  c + d .

Предположим, все числа a,b,c,d  нечётны, тогда все выражения в скобках являются чётными числами. Квадрат любого нечётного числа даёт остаток 1 при делении на 4 (поскольку (2k+ 1)2 = 4(k2+ k) +1  ), поэтому каждая из скобок в правой части является чётным числом, не делящимся на 4 . Получаем противоречие с тем, что левая часть равенства делится на 2⋅22 =8  , а правая на 8 не делится.

Ошибка.
Попробуйте повторить позже

Задача 4#92431

Диагонали трапеции ABCD (AD ∥BC )  пересекаются в точке O  . На AB  отметили точку E  такую, что прямая EO  параллельна основаниям трапеции. Оказалось, что EO  — биссектриса угла CED  . Докажите, что трапеция прямоугольная.

Источники: Курчатов - 2021, 11.4 (см. olimpiadakurchatov.ru)

Подсказки к задаче

Подсказка 1

Пусть DE пересекает BС в точке К. Отметим накрест лежащие углы при EO и BC, а также соответственные углы при EO и КB. Что можно заметить теперь на рисунке?

Подсказка 2

Верно, равнобедренность одного из треугольников. Также мы знаем про факт, что у равнобедренных треугольников медиана является высотой.

Подсказка 3

Рассмотрим пары треугольников DBK, DOE и ABC, AEO. Что можно заметить при взгляде на них, учитывая подобие?

Подсказка 4

Равные коэффициенты подобия. Теперь задача быстро дорешивается фактом из 2 подсказки!

Показать доказательство

Пусть прямая DE  пересекает прямую BC  в точке K  .

PIC

Заметим, что ∠BCE = ∠CEO = ∠DEO  =∠DKC  , поэтому треугольник CEK  является равнобедренным и CE =EK  . Докажем, что отрезок EB  является его медианой отсюда последует, что он также является и высотой, и трапеция окажется прямоугольной (в силу того, что          ∘
∠ABC  =90 ).

Треугольники DBK  и DOE  подобны с коэффициентом BD
OD-  , а также треугольники ABC  и AEO  подобны с коэффициентом  AC
 AO-  . Эти коэффициенты подобия равны, поскольку параллельные прямые BC  и AD  высекают на прямых AC  и BD  пропорциональные отрезки (также это можно вывести из подобия треугольников AOD  и COB )  . Итак,

KB = BODD-⋅EO = AACO-⋅EO = BC

Ошибка.
Попробуйте повторить позже

Задача 5#49005

 ABCD  – вписанный четырёхугольник, AB >CD, BC >AD.  На сторонах AB  и BC  отмечены точки X  и Y  так, что AX = CD  и AD = CY.  M  – середина XY.  Докажите, что угол AMC  – прямой.

Источники: Курчатов-2015, 11.4 (см. olimpiadakurchatov.ru)

Подсказки к задаче

Подсказка 1

Так, точки X и Y в явном виде нам вряд-ли помогут, поскольку только с помощью этих точек мы не сможем определить ∠AMC. Тогда, давайте достроим картинку таким образом, чтобы MC и MA стали средними в треугольниках. Что для этого нужно сделать?

Подсказка 2

Да, нужно удвоить YC за точку C и XA за точку A! Для удобства обозначим точки, полученные после удвоения: Y’ и X’. Тогда, чтобы доказать, что ∠AMC прямой, достаточно доказать, что стороны треугольников, которые параллельны MC и MA – перпендикулярны! Отметим равны углы и стороны, можно ли найти на картинке равные треугольники?

Подсказка 3

Да, Y’CD и DAX равны! Заметим, что на картинке появилось два равнобедренных треугольника: XDY’ и X’DY. Тогда нам достаточно доказать, что угол между биссектрисами этих треугольников прямой! Осталось посчитать уголочки.

Показать доказательство

Удвоим Y C  за точку C  и XA  за точку A  и получим X′ и Y′.  Тогда MA  и MC  — средние линии в треугольниках XY X′ и     ′
XY Y .  Значит, достаточно доказать, что XY  и    ′
XY перпендикулярны.

PIC

Заметим, что YC = CY′ = DA,XA = AX ′ =CD  и Y′CD = DAX.  Отсюда треугольники YCD  и DAX  ′ равны и треугольники Y ′CD  и DAX  равны.

Тогда получается, что XD = DY′ и X′D =DY.  Это значит, что биссектрисы в треугольниках XDY ′ и X ′DY  также являются и высотами. Мы хотим доказать, что XY  и XY ′ перпендикулярны. Это равносильно тому, чтобы перпендикуляры к этим прямым были перпендикулярны, ведь угол между прямыми равен углу между перпендикулярами к ним.

Мы уже заметили, что биссектрисы в треугольниках XDY  ′ и X ′DY  также являются высотами, так значит, нам нужно показать, что угол между биссектрисами является прямым. Давайте его посчитаем:

∠Y ′DY + ∠YDX + ∠XDX ′− ∠Y′DX-− ∠Y-DX′ =
                         2        2

    ′                ′  ∠Y-′DY-  ∠Y-DX-  ∠YDX--  ∠X′DX-
=∠Y DY + ∠YDX + ∠XDX  −    2  −   2   −   2   −   2   =

                  ∠Y′DY   ∠X′DX   ∠Y ′DY   ∠X ′DX
= ∠Y ′DY + ∠XDX ′− --2---− --2---= ---2-- +---2--

Заметим, что ∠Y′DY = ∠DXX ′+ ∠DX ′X = 180∘− ∠XDX ′,  поэтому посчитанный выше угол равен 90∘.

Рулетка
Вы можете получить скидку в рулетке!