Тема БИБН (Будущие исследователи - будущее науки)

Теория чисел на БИБНе

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела бибн (будущие исследователи - будущее науки)
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#79612

Можно ли утверждать, что если для рациональных чисел a,b,c  сумма

 √-   √-   √-
a 2 +b 3+ c 6

является рациональным числом, то a= b=c =0?

Источники: БИБН - 2024, 11.4 (см. www.unn.ru)

Подсказки к задаче

Подсказка 1

Давайте предположим, что это возможно, и обозначим нашу сумму за p. Первое, что бросается в глаза, это то, что √2*√3=√6, поэтому хочется отправить с√6 направо и возвести в квадрат. После возведения в квадрат из иррациональных чисел остается только √6, значит можно его выразить через остальные рациональные...

Подсказка 2

После преобразований мы получаем, что √6=(6c²+p²-2a²-3b²)/(2ab+2pc). Казалось бы победа, мы получили выражение иррационального числа через рациональные, что невозможно. Но ведь мы могли поделить на 0. Что делать, если 2ab+2pc=0?

Подсказка 3

Если ab+pc=0, то 6c²+p²=2a²+3b². Рассмотрим случай с≠0: подставим p=-ab/c в равенство 6c²+p²=2a²+3b². После тождественных преобразований получаем (3с²-a²)(2c²-b²)=0. Найдите здесь противоречие и рассмотрите случай с=0!

Показать ответ и решение

Обозначим a√2+ b√3+ c√6= p∈ ℚ.

Тогда  √ -  √ -     √-
a  2+b  3=p − c 6  . Возведем в квадрат

 2    2    √-   2   2    √ -
2a + 3b +2ab 6= p + 6c − 2pc  6

В случае a= 0  или b= 0  получаем, что левая часть равенства рациональна, а значит и правая тоже, то есть p= 0  или c= 0  . Если имеет место случай c= 0  , то a =b= c= 0.

В случае же p =0  (не умаляя общности a =0  ) получаем

 √-   √-
b 3+ c 6= 0

b+ c√2= 0

И так как b∈Q  , равенство возможно только в случае c =0  . И тогда также b= 0.  То есть если a =0  или b= 0  , то требуемое верно.

Пусть теперь a,b⁄= 0  . Преобразуем:

  2   2   2   2   √ -
2a + 3b − p − 6c= − 6(2ab+ 2pc)

Равенство возможно только в случае, если справа рациональное число, то есть ab= −pc  . Тогда получаем следующую систему

{  2a2+ 3b2 = p2+ 6c2
   6a2b2 = 6p2c2

Эта система имеет вид

{
  x+ y = z+ t=s
  xy = zt=q

По следствию теоремы Виета x,y  и z,t  являются корнями уравнения n2 − sn+ q = 0  . Но у квадратного уравнения максимум 2  корня, поэтому либо x= z  и y = t  , либо x= z  и y = z  .

В первом случае получаем 2a2 = p2  , что невозможно, кроме разобранного случая a= p= 0.

Во втором случае 2a2 = 6c2  , также невозможно, если a,c⁄= 0.

Ответ: да

Ошибка.
Попробуйте повторить позже

Задача 2#74468

Докажите, что существует бесконечное множество троек натуральных чисел x,y,z,  удовлетворяющих соотношению

 2  2   2022
x + y =z

Источники: БИБН-2022, 11.4 (см. www.unn.ru)

Подсказки к задаче

Подсказка 1

Что напоминает данное равенство?

Подсказка 2

Пифагорову тройку! Степени четны, быть может, стоит попробовать как-то преобразовать самую привычную пифагорову тройку?

Подсказка 3

Чтобы не потерять связь с тройкой (3, 4, 5,, попробуем подставить «подобную ей» вместо х, у и z. Хочется сделать так, чтобы z^2022 было равно 25t^2 при некотором t. Как это сделать?

Подсказка 4

Z должно делиться на 5. Получается, что вместо z нужно взять 5n, а остальные числа подогнать под равенство не составит труда)

Показать доказательство

Возьмем пифагорову тройку, например, (3;4;5),  и будем рассматривать соотношения

   2    2     2
(3t) + (4t) =(5t)

для различных натуральных t.  Если положить

 2   2 2    2  2022    2
x = 9t ,y  =16t,z   = 25t ,

то взяв число z,  делящееся на 5, т.е. z =5n  для натурального n,  получим

25t2 = 52022n2022 ⇔ t= 51010n1011

Таким образом, при любом натуральном n  числа вида x= 3t,y = 4t,  где t= 51010n1011,  и z = 5n  удовлетворяют исходному уравнению.

Ошибка.
Попробуйте повторить позже

Задача 3#70794

На доске вначале было записано n  чисел: 1,2,...,n.  Разрешается стереть любые два числа на доске, а вместо них записать модуль их разности. Какое наименьшее число может оказаться на доске после (n − 1)  таких операций

(a) при n= 111;

(b) при n =110?

Источники: БИБН-2016, 8.3 (см. www.unn.ru)

Подсказки к задаче

Подсказка 1

Придумывая пример, имеет смысл разбивать на каждом шаге алгоритма все числа на какие-то удобные «блоки», в которых можно несложно получить именно то число, которое хотим. Получить числа меньше 0 невозможно, поэтому попробуем получить 0 или 1. Работать с большими числами неудобно, к каким меньшим числам можно привести весь наш числовой ряд на доске?

Подсказка 2

К единичкам!(как?). Осталось лишь исследовать ряд единичек и осознать, как получить 0. А что если 0 получить нельзя? Как это доказать? Быть может, какое-то свойство на каждом шагу сохраняется?

Подсказка 3

Обратим внимание на четность суммы всех чисел. Какая она и какой может стать?

Показать ответ и решение

(a) Достаточно привести алгоритм получения нуля, поскольку меньше получить невозможно. Итак, сначала поделим числа кроме единицы на пары (2,3),...(110,111),  написав в них разности, получим набор 1,1,...1  из 56  единиц, включая первоначальную. Далее разбиваем числа на пары и в каждой паре получаем в качестве разности 0,  затем с нулями можно делать что угодно.

(b) Пример на получение единицы можно вывести из предыдущего пункта, только делить будем на пары (1,2),(3,4),...(109,110),  откуда получится 55  единиц, то есть помимо 27  нулей в разности получится дополнительная единица — далее от неё уже никак не избавиться, можно просто по очереди вычесть из неё все нули.

Остаётся показать, что ноль получить не выйдет. Действительно, изначально сумма всех чисел             110⋅111
1+ ...+ 110 = --2--= 55 ⋅111  нечётна. При применении операции a+b → |a− b| в этой сумме её чётность не поменяется, поскольку a +b≡2 a− b,  значит, её чётность не меняется. Тогда и оставшееся число будет нечётным и не равно нулю.

Ответ:

(a) 0  ;

(b) 1  .

Рулетка
Вы можете получить скидку в рулетке!