Тема МВ / Финашка (Миссия выполнима. Твоё признание — финансист)

Планиметрия на МВ (Финашке)

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела мв / финашка (миссия выполнима. твоё признание — финансист)
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#81379

Два треугольника пересекаются по шестиугольнику ABCDEF  , в котором

                ∘        ∘       ∘        ∘
∠A = ∠B =∠C = 100 ,∠D =130 ,∠E = 140,∠F =150

Найдите углы этих треугольников.

Источники: Миссия выполнима - 2024, 11.6 (см. www.fa.ru)

Подсказки к задаче

Подсказка 1

Обратите внимание, что есть два случая для пересечения треугольников.

Показать ответ и решение

Случай 1  (стороны треугольника - тройки несмежных сторон):

PIC

В таком случае все углы треугольников легко находятся, как   ∘     ∘         ∘              ∘
180 − (180 − α)− (180 − β)=α +β − 180 , где α,β  - два соседних угла шестиугольника.

Тогда получаем, что углы красного треугольника равны   ∘  ∘  ∘
20 ,70 ,90 , а углы синего -  ∘   ∘   ∘
20,50,110 .

Случай 2  (один из углов шестиугольника совпадает с углом треугольника):

PIC

Заметим, что это единственное возможное положение в этом случае. Углы синего треугольника равны 150∘ ; 180∘− (180∘− ∠A )− (180∘ − ∠B )=20∘ и 10∘ .

Углы красного треугольника будут равны 130∘;  180∘ − (180∘− ∠B)− (180∘− ∠C)= 20∘ и 30∘ .

Ответ:

 20∘,50∘,110∘ и 20∘,70∘,90∘ ; или 10∘,20∘,150∘ и 20∘,30∘,130∘

Ошибка.
Попробуйте повторить позже

Задача 2#63950

B неравнобедренном треугольнике ABC  проведены биссектрисы AA
  1  и BB
   1  . Известно, что AA  :BB  =AC :BC
   1    1  и что радиус окружности, касающейся стороны AB  и продолжений сторон CA  и CB  , равен 1. Найдите периметр треугольника ABC.

Источники: Миссия выполнима - 2023, 11.6 (см. mission.fa.ru)

Подсказки к задаче

Подсказка 1

Смотрите, у нас есть условие, что AA1/BB1 = AC/BC. Обратите внимание на треугольники AA1C и BB1C. Что можно про них сказать?

Подсказка 2

Хочется сказать что они подобны, но у них общий угол BCA не между двумя соответственными сторонами. Тогда это почти как 4 признак равенства треугольников, только подобия: если растянуть один из треугольников так, что там две стороны будут равны, то выйдет как раз 4 признак равенства! Что это будет означать?

Подсказка 3

Это значит, что либо угол AA1C = BB1C, но это значит, что ABC - равнобедренный, а так нельзя. Остается, что AA1C + BB1C = 180. Что тогда можно сказать про угол BCA?)

Подсказка 4

Он равен 60! А теперь попробуйте посчитать периметр, вспомнив про то, что отрезок касательной из C к нашей вневписанной окружности - это полупериметр)

Показать ответ и решение

PIC

Докажем, что ∠BCA = 60∘ . Для этого положим ∠BAC = α,∠ABC = β  , ∠BCA = γ  и воспользуемся теоремой синусов.

Имеем:

AA1-= ---AC---,  BB1-=---BC--- ,
sinγ   sin∠AA1C    sinγ  sin∠BB1C

откуда

-AA1= AC- ⋅ sin∠BB1C
BB1   BC   sin∠AA1C

С учетом условия AA1  AC-
BB1 = BC  это означает, что sin∠BB1C = sin∠AA1C  . Равенству α =β  противоречит условие задачи.

Поэтому     β  α        ∘
α + 2 + 2 + β =180 , откуда          ∘
α +β =120 и     ∘
γ = 60

Теперь найдем периметр треугольника ABC  . Пусть окружность с центром O  касается стороны AB  в точке K  , а продолжений сторон CA  и CB  - в точках S  и T  соответственно.

Тогда AK  =AS,BK = BT  и

AB + CA +CB = CA + AS+ CB +BT = CS +CT =
      =OS ctg γ+ OTctg γ =2ctg30∘ =2√ 3
             2       2
Ответ:

 2√3

Ошибка.
Попробуйте повторить позже

Задача 3#76535

На сторонах BC,  CA  и AB  неравнобедренного треугольника выбраны точки L,  M  и N  соответственно. Биссектриса угла ABC  и серединный перпендикуляр к отрезку NL  пересекаются в точке P.  Известно, что           ∘
∠ABC  =135 ,AN  =NM  = ML = LC = 1  Найдите длину отрезка MP.

Источники: Миссия выполнима-2022, 11.6 (см. mission.fa.ru)

Подсказки к задаче

Подсказка 1

По условию треугольники AMN и MLC – равнобедренные, значит, ∠NMA = ∠BAC, а также ∠LMC = ∠BCA, что тогда можно сказать про величину угла NML? Также подумайте, как этот угол может нам помочь в дальнейшем решении.

Показать ответ и решение

PIC

Так как из условий AN = NM  =ML  =LC  следуют равенства ∠AMN  =∠BAC  и ∠CML  = ∠BCA  соответственно, то

∠LMN = 180∘ − ∠AMN − ∠CML = 180∘− ∠BAC − ∠BCA = ∠ABC.

Заметим, далее, что точка P  лежит на описанной окружности треугольника △NBL  (и делит пополам дугу NL,  не содержащую   B  ). Поэтому

∠LPN = 180∘− ∠ABC = 180∘− ∠LMN

с учётом того, что P  и M  лежат в одной полуплоскости относительно прямой LN,  заключаем, что P  - ортоцентр треугольника △LMN.

Рассмотрим теперь треугольник △LP M.  Используя равенства

          ∘         ∘
∠LMN  = 135 ,∠LP N = 45

и равнобедренность треугольника △LP N,  нетрудно найти углы ∠PLM = 45∘ и ∠LP M = 22,5∘.  Применив теорему синусов, получим -MP--   -ML---
sin45∘ = sin22,5∘,  откуда

           ∘   ∘ 1+-cos45∘- ∘---√--
MP = 2cos22,5 = 2  ---2----=  2 +  2
Ответ:

 ∘2-+-√2

Ошибка.
Попробуйте повторить позже

Задача 4#96827

В треугольнике ABC  проведены биссектрисы AK  и CM.  Известно, что середины отрезков AB,BC  и MK  лежат на одной прямой. Найдите AB,  если BK  =4,  а KC =5.

Источники: Миссия выполнима - 2021, 11.4 (см. www.fa.ru)

Подсказки к задаче

Подсказка 1

Нам даны отрезки, на которые делит сторону биссектриса. Какое её свойство можно применить?

Подсказка 2

Отношение сторон равно отношению отрезков, на которые биссектриса делит третью сторону! Здорово, теперь мы можем записать некоторые равенства отношений. А что можно сказать о точке O на BP, если она лежит на отрезке, соединяющем середины двух сторон?

Подсказка 3

О лежит на средней линии треугольника, значит, является серединой BP! Какую интересную нам фигуру тогда можно заметить на рисунке?

Подсказка 4

O — середина BP и средней линии. Отсюда мы можем заприметить некоторые параллельности и попробовать записать равенства на отношения. А какая теорема может помочь нам в их записи?

Подсказка 5

Используйте теорему Фалеса!

Показать ответ и решение

PIC

По свойству биссектрисы AK : AABC-= BKKC-= 45  и биссектрисы CM  : BACC-= MABM-.  Пусть т. O  - середина отрезка MK,  а т. P  - точка пересечения прямых BO  и AC.  Заметим, что из условия следует, что т. O  лежит на средней линии △ABC  параллельной AC.  Следовательно, по теореме Фалеса BO = OP  и четырёхугольник MBKP  параллелограмм (диагонали пересекаются и делятся точкой пересечения пополам). Ещё дважды применяя теорему Фалеса, получим AMMB- =PACP= BKKC-= 45,  откуда

AB = 4 ⋅ 4⋅(4 +5)= 144= 5,76
     5  5        25
Ответ:

 5,76

Рулетка
Вы можете получить скидку в рулетке!