Тема ТурГор (Турнир Городов)

Теория чисел на устном туре Турнира Городов

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела тургор (турнир городов)
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#121760

Дано натуральное число n.  Натуральное число m  назовём удачным, если найдутся m  последовательных натуральных чисел, сумма которых равна сумме n  следующих за ними натуральных чисел. Докажите, что количество удачных чисел нечётно.

Источники: Турнир городов - 2025, устный тур, 11.2(см. turgor.ru)

Подсказки к задаче

Подсказка 1:

Ясно, что m > n. Давайте для удобства обозначим m = n + k и будем считать количество таких k. Осталось записать условие на равенство сумм, пользуясь формулой суммы членов арифметической прогрессии.

Подсказка 2:

Пусть первой наименьшее число среди n чисел равно x. Тогда у вас должно получиться равенство, в котором участвуют x, k и n. Обратите внимание на чётность множителей.

Подсказка 3:

У вас должно было получиться равенство (2x + k - 1)k = 2n². Давайте заметим, что у 2n² нечётное количество нечётных делителей. А сколько значений х соответствует распределению делителей по скобочкам?

Показать доказательство

Решение 1. Ясно, что m > n,  положим m =n +k,  где k  — натуральное, и будем искать количество подходящих k,  то есть таких   k,  для которых уравнение

x +(x+ 1)+...+(x+ k− 1)+ ((x+ k)+ ...+(x+ k+ n− 1))= (x+ k+n)+ ...+ (x+k +2n− 1)

имеет решение в натуральных x.  Преобразуем, пользуясь формулой суммы арифметической прогрессии. Получим:

(2x+-k−-1)⋅k-  (2x+-2k+-n−-1)⋅n-  (2x-+2k+-3n−-1)⋅n-
     2     +        2       =        2

Умножив на 2  и приведя подобные слагаемые получаем:

(2x+ k− 1)k= 2n2 (∗)

Слева в уравнении (*) два сомножителя разной чётности, дающие в произведении   2
2n ,  при этом левый сомножитель больше правого. Наоборот, если зафиксировать нечётный делитель d  числа  2
2n ,  то, зная d,  найдём дополнительный делитель  ′  2n2
d =  d ,  и далее из системы          ′                 ′
k= min{d,d} ,2x+ k− 1= max{d,d } однозначно находим натуральное x  (равное (d−d′+1)
 |-2|-- ).

Итак, количество подходящих k  равно количеству нечётных делителей числа 2n2,  которое, в свою очередь, равно количеству всех делителей числа s2,  где (нечётное) s  получается из n  делением на наибольшую степень двойки, входящую в разложение n.  Но количество делителей точного квадрата нечётно (так как все делители числа s2,  кроме s,  можно разбить на пары: t↔ st2 ,  и только делитель s  остаётся без пары).

_________________________________________________________________________________________________________________________________________________________________________________

Решение 2.

Очевидно, m =n +k,  где k  натуральное. Запишем равенство из условия в виде

(a+1)+ ...+ (a +m )=(a+ m +1)+ ...+ (a+ m +n)

Отсюда:

     2
a = n-− k+-1  (∗∗)
    k    2

Чтобы условие задачи выполнялось с данным k,  необходимо и достаточно, чтобы a  было целым неотрицательным.

Положим n =s⋅2r,  где s  нечётное, r  целое неотрицательное. Тогда a  будет целым в двух случаях: (а) если оба члена равенства (**) целые;  (б) если оба они полуцелые.  Первый случай имеет место, когда k  — нечётный делитель числа n2,  то есть делитель числа s2.  Количество c  таких значений k  нечётно, поскольку это всевозможные делители полного квадрата. Второй случай означает, что

k= d⋅22r+1,

где d  — делитель числа s2.  Между первым и вторым множеством значений k  есть биекция: каждому k  из первого множества соответствует число 2nk2  из второго множества, и обратно.

Пусть (f,g)  — пара из указанной биекции, причём f <g.  Тогда при k =f  получится неотрицательное a,  а при k =g  отрицательное. Действительно, в силу (∗∗)  требуется проверить неравенство

k(k+1)≤ 2n2.

Но f(f + 1) ≤fg = 2n2, g(g+ 1)> gf =2n2,  что и требовалось. Поэтому подходящих значений k  будет ровно c,  то есть нечётное количество.

Ошибка.
Попробуйте повторить позже

Задача 2#121764

Пусть A  — набор из n> 1  различных натуральных чисел. Для каждой пары чисел a,b∈A,  где a< b,  подсчитаем, сколько чисел в A  являются делителями числа b− a.  Какое наибольшее значение может принимать сумма полученных n(n−1)
  2  чисел?

Источники: Турнир городов - 2025, устный тур, 11.3(см. turgor.ru)

Подсказки к задаче

Подсказка 1

Что нужно делать в первую очередь, когда проверяем делимость у каких-то элементов последовательности без привязи к их позиции?

Подсказка 2

Упорядочим числа набора! Подумайте, на каких позициях относительно двух элементов могут находиться делители их разности?

Подсказка 3

Для конкретного k и j найдите количество и aᵢ, таких что aⱼ - aᵢ делится на aₖ.

Показать ответ и решение

Сначала докажем оценку. Пусть a < a < ⋅⋅⋅< a
 1   2       n  — элементы набора A.  Заметим, что разность вида a − a
 j  i  при i<j  может делиться на ak  лишь при k <j.  Выберем любые 1≤k < j ≤n  и посмотрим, сколько из чисел вида aj − ai  (при i< j  ) может делиться на ak.  Все такие числа при i≤ k  отличаются менее, чем на ak,  поэтому на ak  может делиться лишь одно из них. Значит, всего таких разностей может быть максимум (j− k− 1)+ 1= j− k.  Итого, получаем оценку:

  ∑          ∑n         ∑n
      (j− k)=   j(j− 1) =  C2j = C3n+1 = (n+-1)n(n−-1)
1≤k<j≤n       j=2   2    j=2                6

Это количество достигается, например, на наборе     2    n−1
1,2,2 ,...,2   .  Здесь все неравенства из оценки обращаются в равенства, а значит, и оценка достигается.

Есть и другие примеры, в том числе, в которых все числа набора попарно взаимно простые, скажем,

a1 = 1,a2 = 2,a3 = 3,a4 =7,...,ak+1 =a1a2...ak+ 1
Ответ:

 C3  = (n+1)n(n−1)-
 n+1      6

Ошибка.
Попробуйте повторить позже

Задача 3#67556

Существует ли целое n > 1  , удовлетворяющее неравенству

[√----   √----]  [√ ----]
  n − 2+ 2 n+ 2 <  9n+ 6?

(Здесь [x]  обозначает целую часть числа x  , то есть наибольшее целое число, не превосходящее x  .)

Источники: Тургор-2023, 11.2 (см. www.turgor.ru)

Подсказки к задаче

Подсказка 1

Первая мысль, которая возникает при виде этого неравенства, — это избавиться от целых частей, с ними неудобно работать. В конце концов, тут есть корни, если бы можно было в исходном неравенстве убрать целые части, то дальше можно и в квадрат возводить спокойно. Что ж, можно попытаться доказать, что целые части действительно можно убрать...

Подсказка 2

Для этого примените неравенства, возникающие из определения целой части числа. Что ж, дальше попробуем пользоваться возведением в квадрат. И... в итоге получается тривиальное неравенство, не содержащее n :( Что это может значить? Вероятно, надо как-то ещё преобразовать исходное неравенство, чтобы такой способ сработал. Если и пытаться это делать, то для правой части, она выглядит получше. Не поможет ли возведение её в квадрат?

Подсказка 3

Хм, можно оценить, что квадрат правой части (к слову, целой) не больше, чем 9n + 6. Подумаем, а когда в таком неравенстве достигается равенство?

Подсказка 4

Вообще, при равенстве получится, что квадрат целого числа даёт остаток 6 по модулю 9. Стоп, а такое вообще возможно?

Подсказка 5

Нет, квадраты чисел по модулю 9 не дают остаток 6! Более того, остаток 5 они тоже не дают, а вот остаток 4 уже может получиться. А тогда можно оценить правую часть более строго!

Подсказка 6

Действительно, получается, что квадрат правой части на самом деле не больше, чем 9n + 4, давайте преобразуем исходное неравенство, а дальше опять будем возводить в квадрат, остаётся надеяться, что в результате получится более содержательное неравенство

Показать ответ и решение

Предположим целое n> 1  удовлетворяет этому неравенству. Имеем

[√----]2
  9n+ 6 ≤ 9n+ 6,

Но квадрат целого числа не может давать ни остаток 6, ни остаток 5 от деления на 9, значит,

[√-----]2
  9n+ 6  ≤9n+ 4

[√-----]  [√ ----]
  9n+ 6 ≤   9n +4

Тогда исходное неравенство влечёт неравенство

√n-− 2+ 2√n-+2< √9n-+4

Возводя в квадрат и приводя подобные слагаемые, получаем, что

∘ -----
4 n2− 4< 4n− 2

              1
n2− 4< n2− n+ 4

n <4,25

Однако, прямая проверка показывает, что при n∈ {2,3,4} исходное неравенство не выполняется — противоречие.

Ответ: нет

Ошибка.
Попробуйте повторить позже

Задача 4#92426

Возрастающая последовательность натуральных чисел a < a <...
 1   2  такова, что при каждом целом n> 100  число a
n  равно наименьшему натуральному числу, большему чем an−1  и не делящемуся ни на одно из чисел a1,a2,...,an−1  . Докажите, что в такой последовательности лишь конечное количество составных чисел.

Источники: Тургор - 2021, 11.4, устный тур (см. turgor.ru)

Подсказки к задаче

Подсказка 1

Нам нужно доказать, что начиная с какого-то m все числа нашей последовательности станут простыми. Допустим, что для какого-то n > m выполняется aₙ = d*t, где t ≤ d. Из условия мы понимаем, что d у нас не является числом вида aₖ, где k < m. Тогда как мы можем оценить d?

Подсказка 2

Точно! Мы можем тогда сказать, что aₖ < d < aₖ₊₁ для k < m. Тогда если мы возьмём достаточно большое m (например, 100), то мы также знаем, что d > a₁₀₀. Что теперь можно сказать про делители числа d, если мы знаем, что d не является членом нашей последовательности?

Подсказка 3

Верно! Мы получаем, что d делится на какое-то aₚ, где p ≤ k. Тогда какое противоречие мы получаем для aₙ?

Показать доказательство

Докажем, что все a
 m  , большие (a  )2
  100  , — простые числа. Предположим противное, тогда некоторое a  >(a  )2
 m    100  раскладывается как am = dt  , где 1< t≤ d< am  , и следовательно a100 < d< am  . Согласно определению am,d  не является ни одним из a1,a2,...,am−1  . Тогда ak < d< ak+1  для какого-то k∈ {100,101,...,m− 1} . Раз d  не было выбрано в качестве ak+1  , оно делится на какое-то ai,i∈ {1,2,...,k} . Но тогда и am  делится на ai  . Противоречие.

Ошибка.
Попробуйте повторить позже

Задача 5#78897

В строку записано 2020  натуральных чисел. Каждое из них, начиная с третьего, делится и на предыдущее, и на сумму двух предыдущих. Какое наименьшее значение может принимать последнее число в строке?

Источники: Тургор - 2020, 11.1, устный тур (см. turgor.ru)

Подсказки к задаче

Подсказка 1

Начните с малого: попробуйте построить последовательность из 3-4 чисел, удовлетворяющих условиям. Какие минимальные значения можно выбрать для первых двух чисел? Как будет расти последовательность?

Подсказка 2

Докажите, что каждое следующее число должно быть значительно больше предыдущего. Если aₖ делится на aₖ₋₁ и на (aₖ₋₁ + aₖ₋₂), как это ограничивает минимальное значение?

Подсказка 3

Попробуйте взять первые два числа равными 1. Как будет выглядеть последовательность? Почему факториалы — это единственный способ достичь минимального последнего числа?

Подсказка 4

Допустим, для первых k чисел минимальная последовательность — это факториалы. Как доказать, что aₖ₊₁ должно быть не меньше k! ? Используйте условие делимости на сумму двух предыдущих. aₖ₊₁ должно делиться на aₖ + aₖ₋₁ = (k-1)! + (k-2)! = (k-1)·(k-2)! + (k-2)! = k·(k-2)!

Показать ответ и решение

Пример. Условию задачи, очевидно, удовлетворяют числа 1,1,2!,3!,...,2019!,  так как при любом натуральном k  число (k+2)!  делится как на (k +1)!,  так и на (k +1)!+k!= k!(k+ 2).

Оценка. Пусть a,b,c  — три подряд идущих числа в строке, но не первые три числа. Докажем, что c  -b
b ≥a +1.  По условию, -b   c
a = x,b = y,  где x  и y  натуральные. Тогда c= by = axy,  причём c  делится на b+ a= ax+a = a(x+ 1).  Получаем, что axy  делится на a(x+ 1),  откуда xy  делится на x+ 1,  и так как x  и x +1  взаимно просты, y  делится на x+1,  то есть y ≥ x+ 1,  что и требовалось.

Заметим, что первые два числа не меньше 1  каждое. Третье число больше второго (так как делится на сумму второго и первого), а значит, хотя бы в два раза больше второго (так как делится на него и не равно ему). По доказанному выше, четвёртое число тогда хотя бы в 3  раза больше третьего, пятое — хотя бы в 4  раза больше четвёртого, и так далее, откуда по индукции получаем, что k  -е число не меньше, чем (k− 1  )! при всех натуральных k.

Ответ:

 2019!

Ошибка.
Попробуйте повторить позже

Задача 6#81384

Имеется натуральное 1001  -значное число A.  1001  -значное число Z  — то же число A,  записанное от конца к началу (например, для четырёхзначных чисел это могли быть 7432  и 2347  ). Известно, что A> Z.  При каком A  частное A∕Z  будет наименьшим (но строго больше 1  )?

Подсказки к задаче

Подсказка 1

Пусть A = a₁₀₀₀a₉₉₉...a₀. (Где a_i — цифры). Что можно сказать про a₀, a₁,..., a₄₉₉, учитывая A > Z?

Подсказка 2

Верно! Они не могут быть все девятками! Теперь уже легко указать максимальное значение Z. Какое?

Подсказка 3

Правильно! 9...989...9 (в начале 499 девяток, а в конце 501 девятка). Обозначим за Z₀ это число. Теперь будем пытаться оценить A - Z снизу. Для начала давайте поймём, как действовать, если мы найдем точную оценку на A - Z снизу, и она будет достигаться при Z = Z₀.

Подсказка 4

Останется только вычесть из дроби A/Z единицу, подставить Z₀ и получить ответ. Какая оценка на A - Z напрашивается, если мы хотим равенство при Z = Z₀?

Подсказка 5

Верно! 10⁵⁰¹ - 10⁴⁹⁹. Давайте будем доказывать эту оценку. Для удобства введем обозначения φ_n = a_{501 + n} - a_{499 - n} и △_n = 10⁵⁰¹⁺ⁿ - 10⁴⁹⁹⁻ⁿ. Как тогда записывается число A - Z?

Подсказка 6

Ага! A - Z = φ₄₉₉△₄₉₉ + ... + φ₁△₁ + φ₀ △₀. Прежде чем оценивать это выражение, давайте попробуем оценить снизу отношение △_{i +1} / △_i.

Подсказка 7

Оно всегда больше 10. Пусть j — максимальный индекс такой, что φ_j ≠ 0. Попробуйте написать оценку на |φ_j△_j + ... + φ₁△₁ + φ₀ △₀| используя неравенство треугольника и нашу оценку на отношение △_{i +1} / △_i. Также стоит помнить, что φ_i является разностью цифр, а, значит, не больше 9.

Показать ответ и решение

Первое решение. Пусть A = a--a---...a.
    1000 999   0  Поскольку A >Z,  среди цифр a,a ,...,a
 0 1    499  есть хотя бы одна недевятка. Значит, Z ≤ Z0 = 99◟. ◝4.◜99.9◞89◟95..◝◜0.19◞.  Покажем, что         501    499
A − Z ≥10  − 10 .  Отсюда будет следовать, что

A      10501− 10499
Z-− 1≥ ----Z0----

Эта оценка достигается при Z =Z0,  что и даёт ответ. Имеем

               (       )          (       )               (          )
A− Z =(a1000− a0) 101000− 1 + (a999− a1) 10999− 10 + ⋅⋅⋅+ (a501− a499)10501− 10499 =

= φ499Δ499+φ498Δ498 +⋅⋅⋅+ φ0Δ0

где φi =a501+i− a499−i  и       501+i    499−i
Δi = 10    − 10  при i= 0,1,...,499.  Заметим, что Δi+1 > 10Δi.  Пусть j− наибольший индекс, при котором φj ⁄= 0.  Тогда

|φjΔj + φj−1Δj−1+ ⋅⋅⋅+ φ0Δ0|≥|φjΔ(j|− |φj−1Δj−1|− ⋅⋅⋅− |φ)0Δ0|≥
                         ≥Δj  1− 9-− -9-− ⋅⋅⋅− -9j- = Δjj ≥ Δ0
                                 10  100      10    10

что и требовалось.

_________________________________________________________________________________________________________________________________________________________________________________

Второе решение. Ясно, что можно минимизировать (положительное) число AZ-− 1= A−ZZ.  Пронумеруем цифры в A  слева направо a ,a,...,a   .
 1 2     1001  Пусть k  — наименьший номер, для которого a ⁄= a
 k  1002−k  (тогда k≤ 500  и a >a     ,
k   1002−k  ибо A > Z  ).

Рассмотрим произвольный оптимальный пример. Заменим первые и последние k− 1  цифр на девятки. A− Z  не изменится, Z  не уменьшится, то есть наша дробь не увеличится. По этой же причине a501  можно заменить на 9.  Заменим ak  на 9,  а a1002−k  на  8.  При этом A− Z  не увеличится, а Z  не уменьшится. Заменим все цифры ak+1,...,a500  на нули, а a502,...,a1001−k  на девятки. Тогда A − Z  не увеличится, а Z  если и уменьшится, то на меньшую величину (это произойдёт только тогда, когда вторая половина и так была девятками!). Поскольку в оптимальном примере A− Z <Z  (в первом просто меньше цифр), то, ясно, A−Z-
 Z  не возрастёт. Итак, можно считать, что A  имеет вид

9◟9.◝.◜.9 ◞0◟0.◝.◜.0◞999◟ ◝..◜.9◞89◟9..◝◜.9◞
  k   500−k  500−k   k−1

В этом случае

        501   500    k   k−1
A − Z = 10  +10   − 10 − 10

Это выражение достигает минимума при k= 500,  и при этом же k  достигается максимум значения рассматриваемых Z.  Значит, это и есть ответ.

Ответ:

При A,  запись которого (слева направо) такая: 501  девятка, восьмёрка, 499  девяток

Ошибка.
Попробуйте повторить позже

Задача 7#89082

Для каких натуральных n  верно следующее утверждение: для произвольного многочлена P(x)  степени n  с целыми коэффициентами найдутся такие различные натуральные a  и b,  для которых P (a)+ P(b)  делится на a+ b?

Подсказки к задаче

Подсказка 1

Условие задачи сильно напоминает формулировку теоремы Безу для многочленов: "Пусть P(x) является многочленом с целыми коэффициентами. Тогда для любых чисел целых чисел a, b число P(a)-P(b) делится на a-b." Доказательство данного утверждения опирается на тот факт, что для любых целых чисел a, b и натурального числа n a^n-b^b кратно a-b В данной задаче разность многочленов меняется на их сумму. К нашему счастью, для нечетных n и произвольных целых чисел a и b верно, что a^n+b^n кратно a+b. Что позволяет понять данное соображение в условиях нашей задачи?

Подсказка 2

Если представить произвольный многочлен P(x) в виде сумму многочленов P₀(x)+P₁(x), где в P₀(x) входят все мономы P(x) четной степени, а в P₁(x) - нечетной. Тогда, аналогично доказательству теоремы Безу, для любых натуральных чисел a, b верно, что P₁(a)+P₁(b) кратно a+b, тем самым мы показали, что число P(a)+P(b) сравнимо с P₀(a)+P₀(b) по модулю a+b. Что можно сказать о многочленах, для которых P₀(x) является константой?

Подсказка 3

Пусть P₀(x)=с для некоторого целого с. Тогда P(a)+P(b) сравнимо с 2c по модулю a+b, и по условию 2с кратно на a+b. Существует ли число c такое, что для любых различных чисел a и b число 2c не кратно a+b?

Подсказка 4

Существует! Например, число c=1. Таким образом, 2с=2<a+b, следовательно, 2с не кратно a+b. Таким образом, мы показали, существует многочлен P(x) = P₁(x)+1 произвольной нечетной степени, для которого искомые числа a, b не существуют. Осталось показать, что для любого многочлена четной степени утверждение задачи верно.

Подсказка 5

Покажем, что существуют такие числа натуральные числа a и b, что для многочлена P(x) верно, что P₀(a)+P₀(b) кратно a+b. Зафиксируем произвольное число a=m. Тогда P₀(m)+P₀(b) должно быть кратно m+b. Если b=P₀(m)-m, то m+b=P(m), то есть достаточно показать, что P₀(P₀(m)-m) кратно P₀(m). Это правда, поскольку P₀(P₀(m)-m) сравнимо c P₀(-m) по модулю P₀(m) и, в свою очередь, P₀(-m)=P₀(m), поскольку P₀(x) состоит из лишь мономов четной степени. В чем проблема данных рассуждений?

Подсказка 6

Число b=P₀(m)-m не обязательно является целым. Для решения задачи осталось показать, что существует для любого многочлена четное степени существует такое натуральное m, что число P₀(m)>m.

Показать ответ и решение

Нечётные n  не подходят. В самом деле, рассмотрим многочлен P(x)=xn +1  и различные натуральные a,b.  Так как n  нечётно,  n   n
a + b  делится на a+ b,  а тогда              n  n
P (a)+ P(b)= (a + b)+ 2  не делится, поскольку a +b> 2.

Осталось доказать, что все чётные n  подходят. Рассмотрим произвольный многочлен P(x)  степени n.  Представим его в виде суммы P (x)= P0(x)+ P1(x),  где в P0(x)  все мономы чётной степени, а в P1(x)  — нечётной. Заметим, что при всех натуральных a,b  сумма P1(a)+P1(b)  делится на a+ b.  Докажем, что найдутся такие a,b,  что и P0(a)+P0(b)  делится на a+ b.  Заметим, что степень P0  равна n.

Рассмотрим случай, когда старший коэффициент P0(x)  положителен (в случае отрицательного старшего коэффициента проведём дальнейшее доказательство для многочлена −P0(x)).  Так как n> 1,  то найдётся такое натуральное m,  что P0(m )>2m.  Докажем, что a =m,b =P0(m)− m  подходят. В силу выбора m,  они оба натуральные, причём b> a.  Далее, по модулю a +b= P0(m)  выполняются сравнения P0(a)=P0(m)≡ 0  (очевидно) и P0(b)=  P0((b+a)− a)≡P0(−a)= P0(m )≡0  (в силу чётности многочлена P0)  . Значит, P0(a)+P0(b)≡ 0  (mod a+b),  что и требовалось.

_________________________________________________________________________________________________________________________________________________________________________________

Замечание. В случае чётного n  можно проделать подобное рассуждение и без разбиения на чётную и нечётную компоненты. Поскольку степень многочлена P(x)+P (−x)  равна n >1,  существует такое натуральное m  , что P(m)+ P(−m)> 2m  . Тогда подойдут числа a= m,b= P(m)+ P(−m )− m.  Действительно, тогда b> a> 0,  и по модулю a+ b= P(m)+ P(−m)  верно сравнение P (a)+ P(b)≡ P(a)+P (−a)= P(m)+ P(−m )≡0.

Ответ:

При всех чётных n

Ошибка.
Попробуйте повторить позже

Задача 8#79884

Конечно или бесконечно множество натуральных чисел, у которых как в десятичной записи, так и в семеричной записи нет нуля?

Источники: Тургор-2013, 11.4(см. www.turgor.ru)

Подсказки к задаче

Подсказка 1

При переходе из 10-й в 7-ую систему счисления число ведет себя непонятным образом, попробуйте подобрать такое число, чтобы в 7-й системе было приятно с ним работать

Подсказка 2

Какие числа в семеричной системе легко переводятся в десятичную систему счисления?

Подсказка 3

aₙ = 7ⁿ+7ⁿ⁻¹…+7+1 в семеричной системе счисления записывается так: 111…111 (n+1 единица). Всегда ли aₙ не имеет нулей?

Подсказка 4

Чтобы не сильно менять вид числа aₙ будем добавлять числа вида 7^k, k ≤ n

Подсказка 5

Пусть ноль где-то есть, какую степень семерки нужно взять чтобы избавиться от 0, но не совершить переход через разряд?

Подсказка 6

Найдётся степень семёрки, лежащая между 10^i и 7×10^i. Докажите, что перехода через разряд не произойдёт.

Показать ответ и решение

При любом натуральном n  положим a = 7n+ 7n−1+...+7+ 1.
 n  Покажем, что к a
 n  можно прибавить несколько различных степеней семёрки, не превосходящих  n
7 ,  чтобы получилось число bn  без нулей в десятичной записи. Тогда семеричная запись bn  будет состоять из единиц и двоек. Ясно, что таким образом мы построим бесконечно много различных чисел bn,  удовлетворяющих условию.

Итак, рассмотрим десятичную запись числа an;  рассмотрим первый слева ноль в ней (если он есть). Пусть он стоит в i  -м разряде справа (разряд единиц считаем нулевым). Найдётся степень семёрки k
7,  лежащая между   i
10  и     i
7 ⋅10 ;  заметим, что она меньше an,  и поэтому меньше  n+1
7   .  После прибавления её к an  перехода из i  -го разряда не произойдёт (так как первая цифра  k
7  меньше 9  ), при этом в i  -м разряде окажется не ноль. Значит, в полученном числе первый слева ноль в десятичной записи (если он есть) расположен правее, чем в an;  применим к этому нулю то же действие (при этом мы прибавим меньшую степень семёрки, чем в предыдущий раз). Продолжая так дальше, в результате мы построим требуемое число bn.

Ответ:

Бесконечно

Ошибка.
Попробуйте повторить позже

Задача 9#104432

Найдите все такие пары натуральных чисел a  и b,  что a1000 +1  делится на b619  и b1000+ 1  делится на a619.

Показать ответ и решение

Если a =1,  то, очевидно, b=1;  при этом пара (1,1)  подходит. Осталось разобрать случай a,b>1.  Заметим сразу, что a  и b  взаимно просты; пусть a> b.

Число

    1000   1000     1000  ( 1000  )
A =a   + b   + 1=a    + b   + 1

делится на a619;  аналогично, A  делится на b619,  а из взаимной простоты и на их произведение. Итак, a1000+b1000+ 1≥ a619b619,  а значит,  1001    1000  619619
a   ≥ 2a   ≥ a  b  ,  или  382   619
a  ≥ b  .  С другой стороны,  1001   1000     619
b   > b   + 1≥ a  .  Итак,

1001⋅382   619⋅382  619⋅619
b     > a     ≥ b

Но 1001⋅382< 6192  — противоречие.

Ответ:

 (1,1)

Рулетка
Вы можете получить скидку в рулетке!