Тема Изумруд

Планиметрия на Изумруде

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела изумруд
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#79618

Вписанная окружность треугольника ABC  с центром в точке I  касается сторон BC,AC, AB  соответственно в точках D,E,F  . Точки M  и N  симметричны вершине A  относительно прямых DE  и DF  соответственно. Окружности, построенные на отрезках IE  и IF  как на диаметрах, вторично пересекаются в точке K  . Докажите, что K  лежит на прямой MN  .

Источники: Изумруд-2024, 11 (см. izumrud.urfu.ru)

Показать доказательство

Докажем, что точка K  является серединой отрезка F E  . Действительно, окружности построены на FI  и IE  как на диаметрах, поэтому

               ∘
∠F KI = ∠EKI = 90.

Следовательно, постольку FI = IE  и KI  — высота равнобедренного треугольника FIE,  точка K  является серединой его основания.

PIC

Теперь достаточно проверить, что четырехугольник NF ME  является параллелограммом. Это так, поскольку

NF = AF =AE = EM,

где первое и третье равенство следует из симметрии, а второе верно, поскольку AF  и AE  являются отрезками касательных, проведенных из одной точки.

Осталось показать, что NF ||EM.  Для этого достаточно доказать, что EM ||BC,  тогда аналогично NF ||BC,  откуда следует требуемое. Последнее верно, ведь

∠(DC,DE )= ∠(DE, EC)= ∠(DE,AE )= ∠(EM, ED ).

где ∠ (DC,DE )  обозначает угол между DC  и DE  (с другими аналогично).

Ошибка.
Попробуйте повторить позже

Задача 2#68190

В неравнобедренном треугольнике ABC  точка K  — середина стороны AB,M  — точка пересечения медиан, I  — центр вписанной окружности. Известно, что         ∘
∠KIB = 90 . Докажите, что MI ⊥ BC  .

Источники: Изумруд-2022, 11.4 (см. izumrud.urfu.ru)

Показать доказательство

PIC

Давайте поймем, как реализовать странное условие про угол. Вспомним про то, что внутренняя и внешняя биссектрисы одно и того же угла перпендикулярны. Тогда давайте дополнительно отметим центр вневписанной окружности данного треугольника, касающейся стороны BC.  Пусть это Ia.  Значит,

∠IaBI = ∠BIK = 90∘ ⇐⇒ BIa ∥ KI

Так как AK = KB,  то IK  — средняя линия треугольника ABIa.  По лемме о трезубце W  — середина IIa,  следовательно, CI =IIa = 2IW.  Тогда

-AI = 2
IW    1

Пусть P  — середина стороны BC.  Тогда по свойству медианы:

AM- = 2
MP    1

Тогда

MI ∥W P

Так как W  — середина дуги BC,  не содержащей A,  то

WP ⊥ BC

А это означает требуемое.

Ошибка.
Попробуйте повторить позже

Задача 3#94274

В остроугольном треугольнике ABC  высоты AA
   1  и BB
   1  пересекаются в точке H  . Точки M  и N  — середины высот AA
   1  и BB
  1  . Оказалось, что центр I  вписанной в треугольник HMN  окружности лежит на биссектрисе угла MCN  . Докажите, что треугольник ABC  равнобедренный.

Источники: Изумруд - 2021, 11.5 (см. izumrud.urfu.ru)

Показать доказательство

Рассмотрим прямоугольные треугольники AA  C
   1  и BB C
  1  с общим углом при вершине C  . Они подобны, поэтому ∠CAA  = ∠CBB
     1       1  и -AA1  AC-
BB1 = BC  . Так как      1
AM  =2AA1  и      1
BN = 2BB1  , то AM-  AC-
BN = BC  , а значит, треугольники AMC  и BNC  подобны и ∠ACM  = ∠BCN  .

Последнее равенство означает, что биссектриса CI  угла MCN  является также биссектрисой угла ACB  . Из точки I  опустим перпендикуляры IA2  и IB2  на прямые AH  и BH  соответственно, а также перпендикуляры IL  и IK  на прямые AC  и BC  соответственно. Так как точка I  лежит на биссектрисе угла ACB  , то IL = IK  . Так как I  — центр вписанной в треугольник HMN  окружности, то IA2 =IB2  . Прямые углы IB2B  и IKB  опираются на отрезок BI  , а значит, четырёхугольник BKB2I  вписанный и ∠KIB2 = ∠KBB2  , как вписанные.

PIC

Аналогично доказывается, что ∠LIA2 = ∠LAA2  . По уже доказанному, ∠LAA2 =  ∠KBB2  , а значит, ∠KIB2 =∠LIA2  , из чего следует равенство треугольников LIA2  и KIB2  . Отсюда получаем A2L= B2K,∠KB2B = ∠AA2L  и ∠BKB2 = ∠ALA2  , а значит, треугольники AA2L  и BB2K  равны. Из равенства этих треугольников следует, что AA2 =BB2  , а HA2 =  HB2  по свойству отрезков касательных, а значит, AH = BH  , то есть треугольник ABH − равнобедренный. Из равнобедренности получаем ∠ABH  = ∠BAH  , откуда ∠ABC  =∠BAC  и треугольник ABC  — равнобедренный.

_________________________________________________________________________________________________________________________________________________________________________________

Замечание. Точки M  и N  могли оказаться на отрезках HA1  и HB1  . Если они обе эти точки попали на отрезки HA1  и HB1  , то решение получается аналогичным. Если

же одна точка попала на один из указанных отрезков, а вторая - нет, то центр I  вписанной в треугольник HMN  окружности не будет лежать на биссектрисе угла MCN  . За отсутствие доказательства этого факта баллы не снижались.

Ошибка.
Попробуйте повторить позже

Задача 4#108453

Пусть M  — точка пересечения медиан треугольника ABC.  Оказалось, что ∠ABM  =∠BCM, ∠BAM  = ∠ACM.  Верно ли, что треугольник ABC  — равносторонний?

Источники: Изумруд - 2020, 11.6 (см. izumrud.urfu.ru)

Показать ответ и решение

Пусть BC = a,AC = b,AB =c.  Обозначим середины сторон BC,AC,AB  через A ,B ,C
 1  1 1  соответственно, а длины медиан AA1,BB1,CC1  — через ma,mb,mc  соответственно.

PIC

Заметим, что

∠BAC = ∠BAM  +∠CAM  = ∠ACM + ∠CAM  = ∠AMC1.

Аналогично, ∠ABC  =∠BMC  .
             1  Как известно, существует треугольник, стороны которого равны и параллельны медианам треугольника ABC.  Построим треугольник KLN  такой, что LN = m ,KN  =m ,LK = m .
       a       b      c

PIC

Углы этого треугольника будут равны углам между медианами AA1,BB1,CC1,  а именно

∠KLN  = ∠AMC1 = ∠BAC

и

∠LKN  =∠BMC1  = ∠ABC.

Следовательно, треугольники ABC  и KLM  подобны по двум углам, а значит,

-a-= -b-= -c.
mb   ma   mc

По формуле длины медианы треугольника получим

-∘----a-------= --∘----b------ = -∘----c-------,
12  2(a2 +c2)− b2  12 2(b2+c2)− a2  12 2 (a2+ b2)− c2

откуда

      2            2             2
---2-a2---2 = --2-b-2---2 =---2-c2---2
2(a + c)− b   2(b + c)− a   2(a + b)− c.

Первое равенство равносильно

a2(2(b2+ c2)− a2) =b2(2(a2 +c2)− b2),

откуда

2a2c2− a4 = 2b2c2− b4,2c2(a2− b2)= (a2− b2)(a2 +b2).

Предположив, что a⁄= b  , получим 2c2 = a2+ b2,  откуда    ∘-2--2
c=  a-+2b .  Равенство

      2            2
---2-a2---2 = --2--c2---2
2(a + c)− b   2(a  +b )− c

также выполняется, что проверяется прямой подстановкой.

Таким образом, под условие задачи подойдёт любой треугольник, длины сторон которого связаны соотношением   ∘ -----
c=  a2+b2,
      2  например, треугольник со сторонами a =5,b= 7,c= √37.

Замечание. Треугольники, длины сторон которых связаны соотношением c=  ∘ a2+b2-
    2  , называются автомедианнымии.

Ответ:

вообще говоря, нет

Рулетка
Вы можете получить скидку в рулетке!