Тема Курчатов

Последовательности, функции и их свойства на Курчатове (матан...)

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела курчатов
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#85558

Последовательность натуральных чисел a,a ,a ,...
 0 1 2  определяется следующими соотношениями:

a0 = 1

a  =kn +(−1)na  ,
 n           n−1

где k  — фиксированное натуральное число.

Сколько существует таких последовательностей, в которых встречается число 2024?

Источники: Курчатов - 2024, 11.1 (см. olimpiadakurchatov.ru)

Подсказки к задаче

Подсказка 1

Дана формула для вычисления членов последовательности, но она выглядит сложно, попробуйте явно выразить первые члены, может быть увидите какую-то закономерность.

Подсказка 2

Видно, что каждый член с номером, дающим остаток 3 при делении на 4, равен 1. Тогда попробуйте выразить формулы и доказать их справедливость для членов с номерами 4m, 4m+1, 4m+2 и 4m+3, где m — целое неотрицательное число.

Подсказка 3

Все члены с номерами вида 4m имеют вид 4mk+1, с номерами 4m+1 — k-1, с номерами 4m+2 — (4m+3)k-1, с номерами 4m+1 — 1. Доказывать эти формулы очень удобно по индукции, ведь по условию дано соотношение, где последующий член выражается через предыдущий.

Подсказка 4

Теперь, используя полученные формулы, посмотрите какие члены нашей последовательности могут равняться 2024.

Подсказка 5

Числа с номерами 4m и 4m+3 сразу отпадают из-за нечётности, а с номером 4m+1 даёт только одну последовательность (какую?). Для чисел с номерами 4m+2 получается уравнение в целых числах ((4m+3)k=2025). При решении полученного уравнения количество рассматриваемых случаев можно уменьшить, рассмотрев, какие остатки при делении на 4 дают 4m+3, 2025 и какой тогда остаток при деление на 4 должно иметь k.

Показать ответ и решение

Докажем, что для любого целого m ≥0  справедливы следующие формулы:

a  = 4mk+ 1,
 4m
a4m+1 = k− 1,
a4m+2 = (4m + 3)k− 1,
a4m+3 = 1.

Будем доказывать эти формулы индукцией по m  . База m = 0  проверяется непосредственно. Предположим, что формулы справедливы для всех чисел, не больших m − 1  , и докажем эти формулы для числа m  . Поскольку по предположению индукции a4m−1 = 1  , последовательно получаем следующие равенства:

 a4m = k⋅(4m)+ (−1)4ma4m−1 =4mk +1,
a    = k(4m +1)+ (− 1)4m+1a  = (4km + k)− (4mk+ 1)=k − 1,
 4m+1               4m+2 4m
a4m+2 = k(4m +2)+ (− 1)    a4m+1 = (4km +2k)+ (k − 1)= (4m + 3)k− 1,
a4m+3 = k(4m +3)+ (− 1)4m+3a4m+2 = (4km +3k)− (4km +3k − 1)= 1.

Таким образом, наши формулы доказаны. Теперь, используя эти формулы, посмотрим, какие члены нашей последовательности могут равняться 2024. Ясно, что числа вида a4m  и a4m+3  не могут равняться 2024: числа вида a4m  нечётны, а числа вида a4m+3  равны 1 . Далее, числа вида a4m+1  могут равняться 2024 только при k =2025  , что дает нам один пример последовательности.

Наконец, предположим, что для некоторого целого неотрицательного m  число a4m+2  равно 2024 . Мы получаем следующее уравнение: (4m+ 3)k= 2025  . Заметим, что сомножитель 4m + 3  дает остаток 3 при делении на 4 , а число 2025 дает остаток 1 при делении на 4. Значит, число k  , во-первых, должно быть делителем числа 2025 , а во-вторых, должно иметь остаток 3 при делении на 4 (т.к. 3⋅3≡ 1(mod4)  ). Поскольку 2025 =34⋅52  , число k  имеет вид 3α⋅5β  , где α∈ {0,1,2,3,4} и β ∈{0,1,2} . Для того, чтобы число  k  такого вида давало бы остаток 3 при делении на 4 , необходимо и достаточно, чтобы степень α  была бы нечетной (поскольку 5 ≡1(mod4)  и 3α ≡ 4(−1)α(mod4)  ). Получаем ещё 6 возможных значений k:3,3⋅5,3⋅52,33,33⋅5,33⋅52  . Вместе с вариантом k =2025  получаем 7 возможных последовательностей.

Ответ: 7

Ошибка.
Попробуйте повторить позже

Задача 2#70785

Назовём функцию f  хорошей, если

  • f  определена на отрезке [0,1]  и принимает действительные значения;
  • для всех x,y ∈ [0,1]  верно      2
|x− y| ≤ |f(x)− f(y)|≤ |x − y|.

Найдите все хорошие функции.

Источники: Курчатов-2022, 11.6 (см. olimpiadakurchatov.ru)

Подсказки к задаче

Подсказка 1

Сразу заметим важную вещь: если f(x) - решение, то и f(x) + c будет решением, где c - любая константа, а также -f(x) - решение. Какие удобные значения функции мы тогда можем подобрать?

Подсказка 2

Сразу хочется сделать, чтобы f(0) = 0. Попробуйте подставить туда точки 0 и 1, что тогда выйдет?)

Подсказка 3

Выйдет, что 1 <= |f(1)| <= 1, т.е. |f(1)| = 1. Давайте считать, что f(1) = 1 (т.к. мы все равно можем умножить функцию на минус в случае чего). А теперь подумайте, что можно подставлять, чтобы оценить f(x)?

Подсказка 4

Например, подставим y = 0, и получим, что f(x) <= |f(x)| <= |x| = x, т.е. f(x) <= x. Попробуйте теперь получить обратную оценку и f(x) будет найдена!

Показать ответ и решение

Заметим, что вместе с каждой функцией f(x),  удовлетворяющей условию, ему также удовлетворяют и все функции вида f(x)+ c  и − f(x).  Докажем, что если f(0) =0  и f(1) ≥0,  то при всех x∈ [0,1]  верно f(x)= x.  Отсюда и из замечания выше будет следовать ответ.

Итак, пусть f(0)= 0  и f(1)≥ 0  . Подставив x =0,y = 1  , получаем 1≤ |f(0)− f(1)|≤ 1  , то есть |f(1)|= 1  , поэтому f(1)= 1  . Далее для любого x ∈(0,1)  имеем

f(x)≤ |f(x)|= |f(x)− f(0)|≤ |x− 0|= x и

1− f(x) ≤|1− f(x)|= |f(1)− f(x)|≤|1− x|= 1− x

Итак, f(x)≤ x  и 1 − f(x)≤1 − x,  то есть f(x) ≥x.  Следовательно, f(x)=x.

Ответ:

 f(x)= x+c,f(x)= −x +c,  где c∈ ℝ

Ошибка.
Попробуйте повторить позже

Задача 3#92432

Даны положительные действительные числа a,b,c  . Известно, что

(a − b)lnc+ (b− c)ln a+(c− a)lnb= 0.

Докажите, что

(a − b)(b− c)(c− a)= 0.

Источники: Курчатов - 2021, 11.6 (см. olimpiadakurchatov.ru)

Подсказки к задаче

Подсказка 1

Если а = с, то задача решена. Поэтому рассмотрим случай, когда а ≠ с. Поделим каждую часть уравнения на a - c и перенесём ln(b) в другую сторону.

Подсказка 2

Обозначим k = (b-c)/(a-c), 1-k = (a-b)/(a-c) и перепишем условие, которое мы получили в прошлой подсказке. Введём систему координат и точки А, B, C, координаты которых будут удовлетворять функции y = ln(x).

Подсказка 3

Вспомните, как выглядит график y = ln(x). Может ли прямая пересекать этот график в трёх точках A, B, C, если ни одна из точек не совпадает с другой?

Показать доказательство

Если a =c  , то всё очевидно. Если a⁄= c  , поделим равенство на a− c  и перенесём lnb  в другую часть, получим

     b−-c     a−-b
lnb= a− clna+ a− clnc.

Рассмотрим на координатной плоскости две точки: A (a;lna)  и C(c;lnc)  , а также обозначим     b−c
α =a−c,  тогда       a−b
1− α= a−c  .

Точка B  с координатами xB = αa+ (1− α )c= b  и yB = αlna+ (1− α)ln c= lnb  лежит на прямой AC  .

Но также ясно, что эти три точки лежат на графике функции y = lnx  . Так как эта функция является вогнутой (например, потому, что её вторая производная отрицательна), то с прямой может пересекаться максимум по двум точкам, а это значит, что какие-то два из трёх чисел a,b,c  совпадают:

(a− b)(b− c)(c− a) =0

Ошибка.
Попробуйте повторить позже

Задача 4#75967

Про положительные числа x  и y  известно, что

---1----  ---1---- ---1---
1+ x+ x2 + 1+ y+y2 +1 +x +y =1

Какие значения может принимать произведение xy  ? Укажите все возможные варианты и докажите, что других нет.

Показать ответ и решение

Заметим, что при каждом положительном y  функция

          1        1         1
fy(x)= 1-+x+-x2 + 1+-y+-y2 + 1+-x+-y

строго монотонно убывает на луче (0;+∞ ),  поскольку знаменатели всех дробей возрастают. Следовательно, функция fy  принимает каждое значение не более одного раза. При этом нетрудно видеть, что:

fy(1) =1
  y

откуда и заключаем, что xy = 1.

Ответ: только 1
Рулетка
Вы можете получить скидку в рулетке!