01 Задачи №21 из банка ФИПИ
Ошибка.
Попробуйте повторить позже
Два бегуна одновременно стартовали в одном направлении из одного и того же места круговой трассы в беге на несколько кругов. Спустя один час, когда одному из них оставалось 4 км до окончания первого круга, ему сообщили, что второй бегун пробежал первый круг 20 минут назад. Найдите скорость первого бегуна, если известно, что она на 11 км/ч меньше скорости второго.
Источники:
Пусть скорость первого бегуна равна км/ч, тогда скорость второго бегуна равна
км/ч.
Через 1 час после старта первый бегун пробежал км, а по
условию до конца круга ему осталось 4 км. Значит, длина круга равна
км.
По условию второй бегун пробежал первый круг 20 минут назад, следовательно,
круг он пробегает за 40 минут. Заметим, что 40 минут — это часа. Тогда можем
составить уравнение:
Умножим обе части уравнения на 3:
Значит, скорость первого бегуна равна 10 км/ч.
Критерии оценивания выполнения задания | Баллы |
Ход решения задачи верный, получен верный ответ | 2 |
Ход решения верный, все его шаги присутствуют, но допущена арифметическая ошибка | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Велосипедист выехал с постоянной скоростью из города A в город B, расстояние между которыми равно 180 км. На следующий день он отправился обратно в A, увеличив скорость на 5 км/ч. По пути он сделал остановку на 3 часа, в результате чего затратил на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость велосипедиста на пути из B в A.
Источники:
Пусть скорость велосипедиста на пути из A в B равна км/ч. Тогда скорость на
пути из B в A равна
км/ч. Составим таблицу:
По условию время, затраченное на обратный путь, вместе с трёхчасовой остановкой такое же, как и время, затраченное на путь из A в B. Составим уравнение:
Решим первое уравнение системы:
Найдем дискриминант полученного уравнения:
Тогда
Корень не подходит по смыслу задачи, так как
Поэтому
скорость велосипедиста на пути из A в B равна 15 км/ч, следовательно, его
скорость на пути из B в A равна
км/ч.
Критерии оценивания выполнения задания | Баллы |
Ход решения задачи верный, получен верный ответ | 2 |
Ход решения верный, все его шаги присутствуют, но допущена арифметическая ошибка | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Велосипедист выехал с постоянной скоростью из города A в город B, расстояние между которыми равно 224 км. На следующий день он отправился обратно в A, увеличив скорость на 2 км/ч. По пути он сделал остановку на 2 часа, в результате чего затратил на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость велосипедиста на пути из A в B.
Источники:
Пусть скорость велосипедиста на пути из A в B равна км/ч. Тогда скорость на
пути из B в A равна
км/ч. Составим таблицу:
По условию время, затраченное на обратный путь, вместе с трёхчасовой остановкой такое же, как и время, затраченное на путь из A в B. Составим уравнение:
Решим первое уравнение системы:
Найдем дискриминант полученного уравнения:
Тогда
Корень не подходит по смыслу задачи, так как
Поэтому
скорость велосипедиста на пути из A в B равна 14 км/ч.
Критерии оценивания выполнения задания | Баллы |
Ход решения задачи верный, получен верный ответ | 2 |
Ход решения верный, все его шаги присутствуют, но допущена арифметическая ошибка | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Велосипедист выехал с постоянной скоростью из города A в город B, расстояние между которыми равно 60 км. На следующий день он отправился обратно в A, увеличив скорость на 10 км/ч. По пути он сделал остановку на 3 часа, в результате чего затратил на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость велосипедиста на пути из B в A.
Источники:
Пусть скорость велосипедиста на пути из A в B равна км/ч. Тогда скорость на
пути из B в A равна
км/ч. Составим таблицу:
По условию время, затраченное на обратный путь, вместе с трёхчасовой остановкой такое же, как и время, затраченное на путь из A в B. Составим уравнение:
Решим первое уравнение системы:
Найдем дискриминант полученного уравнения:
Тогда
Корень не подходит по смыслу задачи, так как
Поэтому
скорость велосипедиста на пути из A в B равна 10 км/ч, следовательно, его
скорость на пути из B в A равна
км/ч.
Критерии оценивания выполнения задания | Баллы |
Ход решения задачи верный, получен верный ответ | 2 |
Ход решения верный, все его шаги присутствуют, но допущена арифметическая ошибка | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Велосипедист выехал с постоянной скоростью из города A в город B, расстояние между которыми равно 224 км. На следующий день он отправился обратно в A, увеличив скорость на 2 км/ч. По пути он сделал остановку на 2 часа, в результате чего затратил на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость велосипедиста на пути из B в A.
Источники:
Пусть скорость велосипедиста на пути из A в B равна км/ч. Тогда скорость на
пути из B в A равна
км/ч. Составим таблицу:
По условию время, затраченное на обратный путь, вместе с трёхчасовой остановкой такое же, как и время, затраченное на путь из A в B. Составим уравнение:
Решим первое уравнение системы:
Найдем дискриминант полученного уравнения:
Тогда
Корень не подходит по смыслу задачи, так как
Поэтому
скорость велосипедиста на пути из A в B равна 14 км/ч, следовательно, его
скорость на пути из B в A равна
км/ч.
Критерии оценивания выполнения задания | Баллы |
Ход решения задачи верный, получен верный ответ | 2 |
Ход решения верный, все его шаги присутствуют, но допущена арифметическая ошибка | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Велосипедист выехал с постоянной скоростью из города A в город B, расстояние между которыми равно 112 км. На следующий день он отправился обратно в A, увеличив скорость на 9 км/ч. По пути он сделал остановку на 4 часа, в результате чего затратил на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость велосипедиста на пути из A в B.
Источники:
Пусть скорость велосипедиста на пути из A в B равна км/ч. Тогда скорость на
пути из B в A равна
км/ч. Составим таблицу:
По условию время, затраченное на обратный путь, вместе с трёхчасовой остановкой такое же, как и время, затраченное на путь из A в B. Составим уравнение:
Решим первое уравнение системы:
Найдем дискриминант полученного уравнения:
Тогда
Корень не подходит по смыслу задачи, так как
Поэтому
скорость велосипедиста на пути из A в B равна 12 км/ч.
Критерии оценивания выполнения задания | Баллы |
Ход решения задачи верный, получен верный ответ | 2 |
Ход решения верный, все его шаги присутствуют, но допущена арифметическая ошибка | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Велосипедист выехал с постоянной скоростью из города A в город B, расстояние между которыми равно 209 км. На следующий день он отправился обратно в A, увеличив скорость на 8 км/ч. По пути он сделал остановку на 8 часов, в результате чего затратил на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость велосипедиста на пути из A в B.
Источники:
Пусть скорость велосипедиста на пути из A в B равна км/ч. Тогда скорость на
пути из B в A равна
км/ч. Составим таблицу:
По условию время, затраченное на обратный путь, вместе с трёхчасовой остановкой такое же, как и время, затраченное на путь из A в B. Составим уравнение:
Решим первое уравнение системы:
Найдем дискриминант полученного уравнения:
Тогда
Корень не подходит по смыслу задачи, так как
Поэтому
скорость велосипедиста на пути из A в B равна 11 км/ч.
Критерии оценивания выполнения задания | Баллы |
Ход решения задачи верный, получен верный ответ | 2 |
Ход решения верный, все его шаги присутствуют, но допущена арифметическая ошибка | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Велосипедист выехал с постоянной скоростью из города A в город B, расстояние между которыми равно 60 км. На следующий день он отправился обратно в A, увеличив скорость на 10 км/ч. По пути он сделал остановку на 3 часа, в результате чего затратил на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость велосипедиста на пути из A в B.
Источники:
Пусть скорость велосипедиста на пути из A в B равна км/ч. Тогда скорость на
пути из B в A равна
км/ч. Составим таблицу:
По условию время, затраченное на обратный путь, вместе с трёхчасовой остановкой такое же, как и время, затраченное на путь из A в B. Составим уравнение:
Решим первое уравнение системы:
Найдем дискриминант полученного уравнения:
Тогда
Корень не подходит по смыслу задачи, так как
Поэтому
скорость велосипедиста на пути из A в B равна 10 км/ч.
Критерии оценивания выполнения задания | Баллы |
Ход решения задачи верный, получен верный ответ | 2 |
Ход решения верный, все его шаги присутствуют, но допущена арифметическая ошибка | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Велосипедист выехал с постоянной скоростью из города A в город B, расстояние между которыми равно 180 км. На следующий день он отправился обратно в A, увеличив скорость на 5 км/ч. По пути он сделал остановку на 3 часа, в результате чего затратил на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость велосипедиста на пути из A в B.
Источники:
Пусть скорость второго велосипедиста равна км/ч. Тогда скорость первого
велосипедиста равна
км/ч. Составим таблицу:
По условию задачи первый велосипедист прибыл к финишу на 3 часа раньше второго. Тогда можем составить уравнение:
Решим первое уравнение системы:
Найдем дискриминант полученного уравнения:
Тогда
Корень не подходит по смыслу задачи, так как
Поэтому
скорость велосипедиста на пути из A в B равна 15 км/ч.
Критерии оценивания выполнения задания | Баллы |
Ход решения задачи верный, получен верный ответ | 2 |
Ход решения верный, все его шаги присутствуют, но допущена арифметическая ошибка | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Два велосипедиста одновременно отправляются в 60-километровый пробег. Первый едет со скоростью на 10 км/ч большей, чем второй, и прибывает к финишу на 3 часа раньше второго. Найдите скорость велосипедиста, пришедшего к финишу вторым.
Источники:
Пусть скорость второго велосипедиста равна км/ч. Тогда скорость первого
велосипедиста равна
км/ч. Составим таблицу:
По условию задачи первый велосипедист прибыл к финишу на 3 часа раньше второго. Тогда можем составить уравнение:
Решим первое уравнение системы:
Найдем дискриминант полученного уравнения:
Тогда
Корень не подходит по смыслу задачи, так как
Поэтому
скорость велосипедиста, пришедшего к финишу вторым, равна 10 км/ч.
Критерии оценивания выполнения задания | Баллы |
Ход решения задачи верный, получен верный ответ | 2 |
Ход решения верный, все его шаги присутствуют, но допущена арифметическая ошибка | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Два велосипедиста одновременно отправляются в 209-километровый пробег. Первый едет со скоростью на 8 км/ч большей, чем второй, и прибывает к финишу на 8 часов раньше второго. Найдите скорость велосипедиста, пришедшего к финишу вторым.
Источники:
Пусть скорость второго велосипедиста равна км/ч. Тогда скорость первого
велосипедиста равна
км/ч. Составим таблицу:
По условию задачи первый велосипедист прибыл к финишу на 8 часа раньше второго. Тогда можем составить уравнение:
Решим первое уравнение системы:
Найдем дискриминант полученного уравнения:
Тогда
Корень не подходит по смыслу задачи, так как
Поэтому
скорость велосипедиста, пришедшего к финишу вторым, равна 11 км/ч.
Критерии оценивания выполнения задания | Баллы |
Ход решения задачи верный, получен верный ответ | 2 |
Ход решения верный, все его шаги присутствуют, но допущена арифметическая ошибка | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Два велосипедиста одновременно отправляются в 180-километровый пробег. Первый едет со скоростью на 5 км/ч большей, чем второй, и прибывает к финишу на 3 часа раньше второго. Найдите скорость велосипедиста, пришедшего к финишу вторым.
Источники:
Пусть скорость второго велосипедиста равна км/ч. Тогда скорость первого
велосипедиста равна
км/ч. Составим таблицу:
По условию задачи первый велосипедист прибыл к финишу на 3 часа раньше второго. Тогда можем составить уравнение:
Решим первое уравнение системы:
Найдем дискриминант полученного уравнения:
Тогда
Корень не подходит по смыслу задачи, так как
Поэтому
скорость велосипедиста, пришедшего к финишу вторым, равна 15 км/ч.
Критерии оценивания выполнения задания | Баллы |
Ход решения задачи верный, получен верный ответ | 2 |
Ход решения верный, все его шаги присутствуют, но допущена арифметическая ошибка | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Два велосипедиста одновременно отправляются в 112-километровый пробег. Первый едет со скоростью на 9 км/ч большей, чем второй, и прибывает к финишу на 4 часа раньше второго. Найдите скорость велосипедиста, пришедшего к финишу вторым.
Источники:
Пусть скорость второго велосипедиста равна км/ч. Тогда скорость первого
велосипедиста равна
км/ч. Составим таблицу:
По условию задачи первый велосипедист прибыл к финишу на 4 часа раньше второго. Тогда можем составить уравнение:
Решим первое уравнение системы:
Найдем дискриминант полученного уравнения:
Тогда
Корень не подходит по смыслу задачи, так как
Поэтому
скорость велосипедиста, пришедшего к финишу вторым, равна 12 км/ч.
Критерии оценивания выполнения задания | Баллы |
Ход решения задачи верный, получен верный ответ | 2 |
Ход решения верный, все его шаги присутствуют, но допущена арифметическая ошибка | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Два велосипедиста одновременно отправляются в 105-километровый пробег. Первый едет со скоростью на 16 км/ч большей, чем второй, и прибывает к финишу на 4 часа раньше второго. Найдите скорость велосипедиста, пришедшего к финишу вторым.
Источники:
Пусть скорость второго велосипедиста равна км/ч. Тогда скорость первого
велосипедиста равна
км/ч. Составим таблицу:
По условию задачи первый велосипедист прибыл к финишу на 4 часа раньше второго. Тогда можем составить уравнение:
Решим первое уравнение системы:
Найдем дискриминант полученного уравнения:
Тогда
Корень не подходит по смыслу задачи, так как
Поэтому
скорость велосипедиста, пришедшего к финишу вторым, равна 14 км/ч.
Критерии оценивания выполнения задания | Баллы |
Ход решения задачи верный, получен верный ответ | 2 |
Ход решения верный, все его шаги присутствуют, но допущена арифметическая ошибка | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Два велосипедиста одновременно отправляются в 208-километровый пробег. Первый едет со скоростью на 3 км/ч большей, чем второй, и прибывает к финишу на 3 часа раньше второго. Найдите скорость велосипедиста, пришедшего к финишу вторым.
Источники:
Пусть скорость второго велосипедиста равна км/ч. Тогда скорость первого
велосипедиста равна
км/ч. Составим таблицу:
По условию задачи первый велосипедист прибыл к финишу на 3 часа раньше второго. Тогда можем составить уравнение:
Решим первое уравнение системы:
Найдем дискриминант полученного уравнения:
Тогда
Корень не подходит по смыслу задачи, так как
Поэтому
скорость велосипедиста, пришедшего к финишу вторым, равна 13 км/ч.
Критерии оценивания выполнения задания | Баллы |
Ход решения задачи верный, получен верный ответ | 2 |
Ход решения верный, все его шаги присутствуют, но допущена арифметическая ошибка | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Два велосипедиста одновременно отправляются в 140-километровый пробег. Первый едет со скоростью на 6 км/ч большей, чем второй, и прибывает к финишу на 3 часа раньше второго. Найдите скорость велосипедиста, пришедшего к финишу вторым.
Источники:
Пусть скорость второго велосипедиста равна км/ч. Тогда скорость первого
велосипедиста равна
км/ч. Составим таблицу:
По условию задачи первый велосипедист прибыл к финишу на 3 часа раньше второго. Тогда можем составить уравнение:
Решим первое уравнение системы:
Найдем дискриминант полученного уравнения:
Тогда
Корень не подходит по смыслу задачи, так как
Поэтому
скорость велосипедиста, пришедшего к финишу вторым, равна 14 км/ч.
Критерии оценивания выполнения задания | Баллы |
Ход решения задачи верный, получен верный ответ | 2 |
Ход решения верный, все его шаги присутствуют, но допущена арифметическая ошибка | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Два велосипедиста одновременно отправляются в 140-километровый пробег. Первый едет со скоростью на 14 км/ч большей, чем второй, и прибывает к финишу на 5 часов раньше второго. Найдите скорость велосипедиста, пришедшего к финишу вторым.
Источники:
Пусть скорость второго велосипедиста равна км/ч. Тогда скорость первого
велосипедиста равна
км/ч. Составим таблицу:
По условию задачи первый велосипедист прибыл к финишу на 5 часа раньше второго. Тогда можем составить уравнение:
Решим первое уравнение системы:
Найдем дискриминант полученного уравнения:
Тогда
Корень не подходит по смыслу задачи, так как
Поэтому
скорость велосипедиста, пришедшего к финишу вторым, равна 14 км/ч.
Критерии оценивания выполнения задания | Баллы |
Ход решения задачи верный, получен верный ответ | 2 |
Ход решения верный, все его шаги присутствуют, но допущена арифметическая ошибка | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Два велосипедиста одновременно отправляются в 100-километровый пробег. Первый едет со скоростью на 15 км/ч большей, чем второй, и прибывает к финишу на 6 часов раньше второго. Найдите скорость велосипедиста, пришедшего к финишу вторым.
Источники:
Пусть скорость второго велосипедиста равна км/ч. Тогда скорость первого
велосипедиста равна
км/ч. Составим таблицу:
По условию задачи первый велосипедист прибыл к финишу на 6 часа раньше второго. Тогда можем составить уравнение:
Решим первое уравнение системы:
Найдем дискриминант полученного уравнения:
Тогда
Корень не подходит по смыслу задачи, так как
Поэтому
скорость велосипедиста, пришедшего к финишу вторым, равна 10 км/ч.
Критерии оценивания выполнения задания | Баллы |
Ход решения задачи верный, получен верный ответ | 2 |
Ход решения верный, все его шаги присутствуют, но допущена арифметическая ошибка | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Два автомобиля одновременно отправляются в 540-километровый пробег. Первый едет со скоростью на 30 км/ч большей, чем второй, и прибывает к финишу на 3 ч раньше второго. Найдите скорость первого автомобиля.
Источники:
Пусть скорость второго автомобиля равна км/ч. Тогда скорость первого
автомобиля равна
км/ч. Составим таблицу:
По условию задачи первый автомобиль прибыл к финишу на 3 часа раньше второго. Составим уравнение:
Решим первое уравнение системы:
Найдем дискриминант полученного уравнения:
Тогда
Корень не подходит по смыслу задачи, так как
Поэтому
скорость второго автомобиля равна 60 км/ч, а скорость первого автомобиля равна
км/ч.
Критерии оценивания выполнения задания | Баллы |
Ход решения задачи верный, получен верный ответ | 2 |
Ход решения верный, все его шаги присутствуют, но допущена арифметическая ошибка | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Два автомобиля одновременно отправляются в 600-километровый пробег. Первый едет со скоростью на 20 км/ч большей, чем второй, и прибывает к финишу на 1 ч раньше второго. Найдите скорость первого автомобиля.
Источники:
Пусть скорость второго автомобиля равна км/ч. Тогда скорость первого
автомобиля равна
км/ч. Составим таблицу:
По условию задачи первый автомобиль прибыл к финишу на 3 часа раньше второго. Составим уравнение:
Решим первое уравнение системы:
Найдем дискриминант полученного уравнения:
Тогда
Корень не подходит по смыслу задачи, так как
Поэтому
скорость второго автомобиля равна 100 км/ч, а скорость первого автомобиля равна
км/ч.
Критерии оценивания выполнения задания | Баллы |
Ход решения задачи верный, получен верный ответ | 2 |
Ход решения верный, все его шаги присутствуют, но допущена арифметическая ошибка | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |