Тема Росатом

Росатом - задания по годам .01 Росатом 2015 и ранее

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела росатом
Разделы подтемы Росатом - задания по годам
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#49158

Положительное целое число x  при делении на 7  имеет остаток 2,  а его квадрат x2  при делении на 49  имеет в остатке 39.  Сколько таких чисел находится на отрезке [100;1000]  ?

Источники: Росатом-14, 11.4 (см. rsr-olymp.ru)

Показать ответ и решение

Числа, дающие по модулю 7  остаток 2  , могут давать по модулю 49  только остатки 2,9,16,23,30,37,44  . При возведении этого остатка в квадрат должно получиться 39  по модулю 49  — этому условию удовлетворяет только остаток 23  . Отсюда нам подходят те и только те числа, которые дают остаток 23  по модулю 49  . Это числа 121,170,...954  , которых 18  штук.

Ответ:

 18

Ошибка.
Попробуйте повторить позже

Задача 2#76942

Математический бильярд имеет форму параллелограмма ABCD  . На сторонах AD  и CD  соответственной расположены точки E  и   F  так, что AE :ED =1 :2  , а DF :FC =1 :3  . Шар находится в точке M  пересечения прямых BF  и CE  . Известно, что шар, направленный в точку N  борта BC  , отразившись от четырех различных бортов, вернулся в точку M  и, продолжив свое движение, повторил свою предыдущую траекторию. Найти величину отношения BN  : NC  , если известно, что траектория шара — выпуклый четырехугольник.

Показать ответ и решение

Рассмотрим траекторию движения, следуя правилу "угол падения равен углу отражения". Пусть эти углы равны α ,α ,α ,α
 1  2 3  4  для случаев отражения от бортов BC  , AB  , AD  , CD  соответственно. Тогда выполняются равенства α1+ α4 = α2+α3  и α1+ α2 = α3+ α4  из тех соображений, что противоположные углы параллелограмма равны. Из этих равенств вытекает, что α1 = α3  и α2 = α4  , из чего, в свою очередь, следует, что ABCD  – прямоугольник.

PIC

Введём аффинную систему координат, в которой A(0;0)  , D(1;0)  , B(0;1)  , C(1;1)  и выпишем уравнения прямых CE  и BF  . Поскольку E(13;0)  и F(1;14)  , прямые CE  и BF  задаются уравнениями:

y = 3x− 1 и y = − 3x+1
   2   2       4

соответственно, а их точкой пересечения будет M (2;1).
   3 2

Теперь отразим прямоугольник ABCD  зеркально сначала от стороны AB  , затем от стороны, в которую перешла BC  при этом отражении, и далее для двух оставшихся сторон по тому же принципу. Это стандартная процедура "выпрямления"бильярдной траектории, соответствующая равенству угла падения углу отражения.

PIC

При таких "зеркальных"отражениях траектория становится отрезком MM ′ , где M ′ - образ точки M  после серии отражений. Её координаты легко вычислить: после четырёх отражений прямоугольник сохранил ориентацию, и сдвинулся на два размера влево и на два размера вверх. Таким образом, M ′(23 − 2;12 + 2)  , и прямая MM ′ имеет угловой коэффициент − 1  . Её уравнением будет

y =− x+ 7
        6

и прямую BC  , заданную уравнением y = 1  , она пересекает в точке с абсциссой x= 16  . Это значит, что точка N  , в которую был направлен шар, делит отрезок BC  в отношении 1:5  .

Ответ: 1 : 5

Ошибка.
Попробуйте повторить позже

Задача 3#49156

Для каких натуральных y  уравнение

 2
x + НОД (y;4)⋅x − 6Н ОД(y;3)= 0

имеет целые решения?

Источники: Росатом-12, 11.5

Показать ответ и решение

Заметим, что a= НОД(y;4)∈ {1,2,4},b= НО Д(y;3)∈{1,3} , обе принадлежности определяются остатком y  по модулю 12  . Разберём случаи

  • a =1,b= 1  . Получаем уравнение x2+ x− 6= 0  , которое имеет целые корни x= −3,2  . Этому случаю удовлетворяют остатки 1,5,7,11  .
  • a =2,b= 1  . Получаем уравнение  2
x  +2x− 6= 0  , которое целых корней не имеет.
  • a =4,b= 1  . Получаем уравнение  2
x  +4x− 6= 0  , которое целых корней не имеет.
  • a =1,b= 3  . Получаем уравнение x2 +x− 18= 0  , корней нет.
  • a =2,b= 3  . Получаем уравнение x2 +2x− 18= 0  , корней нет.
  • a =4,b= 3  . Получаем уравнение x2 +4x− 18= 0  , корней нет.
Ответ:

 y ∈{{1,5}+ 6k}, k∈ ℕ∪{0}

Ошибка.
Попробуйте повторить позже

Задача 4#49161

Найдите натуральные числа n  , для которых

    (  2    )              ( 2    )
НОК  n,n  +15 ⋅НОК(n,n+ 3)=5 n + 45 .

Источники: Росатом-12, 11.4

Показать ответ и решение

Воспользуемся очевидным неравенством Н ОК(a,b)≥ max{a,b} . Отсюда следует

  2        2                        3   2
5(n  +45)≥(n + 15)⋅(n+ 3) ⇐ ⇒  f(n)= n − 2n + 15n− 180 ≤0

Заметим, что f′(x)= 3x2 − 4x+ 15> 0∀x∈ ℝ  , то есть функция монотонно возрастает. Поскольку при n = 6  имеем f(n)=54> 0  , то n ≤5  . Заметим также, что один из НОК-ов должен делиться на 5  , что не выполняется при n= 1,3,4  , поэтому остаётся перебрать два случая

  • n =2  . Получаем 38⋅5⁄= 5⋅(1+45)  .
  • n =5  . Получаем 40⋅40⁄= 5⋅70  .
Ответ:

решений нет

Рулетка
Вы можете получить скидку в рулетке!