№15 из ЕГЭ 2025
Ошибка.
Попробуйте повторить позже
Решите неравенство
Источники:
Найдем ОДЗ:
На ОДЗ преобразуем исходное неравенство:
На ОДЗ последнее неравенство равносильно неравенству
По методу рационализации это неравенство на ОДЗ равносильно:
Раскроем модуль на промежутках знакопостоянства подмодульного выражения.
1) Отсюда
2) Отсюда
Общее решение неравенства с модулем и после пересечения с ОДЗ
получаем
Содержание критерия | Балл |
Обоснованно получен верный ответ | 2 |
Обоснованно получен ответ, отличающийся от верного исключением/включением граничных точек, | 1 |
ИЛИ | |
получен неверный ответ из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения | |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
При этом в первом случае выставления 1 балла допускаются только ошибки
в строгости неравенства: «» вместо «
» или наоборот. Если в
ответ включено значение переменной, при котором одна из
частей неравенства не имеет смысла, то выставляется оценка «0
баллов».
Ошибка.
Попробуйте повторить позже
Решите неравенство
Источники:
Пусть Тогда получаем неравенство
По методу интервалов получаем:
Таким образом,
Сделаем обратную замену:
Значит,
Следовательно,
Содержание критерия | Балл |
Обоснованно получен верный ответ | 2 |
Обоснованно получен ответ, отличающийся от верного исключением/включением граничных точек, | 1 |
ИЛИ | |
получен неверный ответ из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения | |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
При этом в первом случае выставления 1 балла допускаются только ошибки
в строгости неравенства: «» вместо «
» или наоборот. Если в
ответ включено значение переменной, при котором одна из
частей неравенства не имеет смысла, то выставляется оценка «0
баллов».
Ошибка.
Попробуйте повторить позже
Решите неравенство
Источники:
Пусть Тогда получаем неравенство
По методу интервалов получаем:
Таким образом,
Сделаем обратную замену:
Значит,
Следовательно,
Содержание критерия | Балл |
Обоснованно получен верный ответ | 2 |
Обоснованно получен ответ, отличающийся от верного исключением/включением граничных точек, | 1 |
ИЛИ | |
получен неверный ответ из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения | |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
При этом в первом случае выставления 1 балла допускаются только ошибки
в строгости неравенства: «» вместо «
» или наоборот. Если в
ответ включено значение переменной, при котором одна из
частей неравенства не имеет смысла, то выставляется оценка «0
баллов».