Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела алгебра
Разделы подтемы Функции
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#77208

Дана функция f(x)  , определенная на множестве целых чисел и принимающая целые значения.

Известно, что f(1)=1  и для любого целого x  выполняются неравенства

f(x+ 4)≥ f(x)+ 4

f(x+ 1)≤ f(x)+ 1

Найдите f(2025)  .

Показать ответ и решение

Подставим во второе неравенство x+ 4:

f(x+ 4)≤ f(x+ 3)+1 ≤f(x+ 2)+1+ 1≤

≤ f(x +1)+ 1+1 +1≤ f(x)+1+ 1+ 1+ 1= f(x)+ 4.

Тогда получаем:

f(x)+4 ≥f(x+ 4)≥f(x)+4.

Такое возможно, только если стоит знак равенства. Тогда в переходах тоже был знак равенства. Из этого следует, что

f(x+ 1)=f(x)+1.

Тогда f(2025)= 1+ f(2024)=...= 2024+ f(1)= 2025.

Ответ: 2025

Ошибка.
Попробуйте повторить позже

Задача 2#103737

Функция f,  определённая на действительных числах, принимает действительные значения. Известно, что для любых действительных   x,y,  при которых x +y ⁄= 0,  выполнено равенство

      f(x)+f(y)
f(xy)= --x-+y---.

Найдите все такие функции f.

Показать ответ и решение

Подставим в данное равенство y = 1:

     f(x)+f(1)
f(x)= --x-+1---

xf(x)+ f(x)= f(x)+f(1)

xf(x)= f(1)

Из условия следует, что это равенство выполнено при любых x⁄= −1.  В частности, при x =0.  Значит,

f(1)= 0

Тогда получаем, что должно быть верно

xf(x)= 0

То есть f(x)= 0  при всех x ⁄=0;−1.

Далее, подставляя в исходное равенство y =0,  получим

xf(0)=f(x)+ f(0)

Подставляя теперь x =2,  приходим к

f(0)= f(2) =0

Наконец, подстановка y = 0,x= −1  позволяет найти оставшееся значение

f(0)= −f(−1)− f(0)

f(−1)= −2f(0)= 0

Таким образом, f(x)= 0  для любых действительных x.

Ответ:

 f(x)≡ 0

Ошибка.
Попробуйте повторить позже

Задача 3#103848

а) Определите количество положительных корней уравнения 9⋅x6x = 1  ;

б) есть ли у этого уравнения отрицательные корни?

Показать ответ и решение

а) По основному логарифмическому тождеству уравнение равносильно

  6xlnx
9e    = 1

6xlnx =ln1
        9

      1   1
x lnx= 3 ln 3

Производная функции y(x)= xlnx  равна       1
lnx+ xx =lnx+ 1,  поэтому функция убывает при                     1
lnx≤ −1  ⇐⇒   0< x≤ e  и возрастает при    1
x≥ e.

В точке минимума значение функции равно 1       1  1
e ⋅(−1)< 3ln3,  так как − 3= −3lne< −3ln3< −eln3,  поэтому функция достигает значение 1  1
3ln 3  по одному разу левее и правее точки минимума (для обоснования стоит ещё упомянуть непрерывность функции и её неограниченность слева и справа от точки минимума);

б) возведение произвольного отрицательного числа в произвольную отрицательную степень не имеет смысла (не определено однозначно), потому что нарушаются свойства степеней. Например, (−1)−1 = −11 =− 1,  но при этом        (    )−1   −1
(−1)−1 = (−1)2  2 =1 2 = 1√1 = 1.

Ответ:

а) 2;

б) нет

Ошибка.
Попробуйте повторить позже

Задача 4#104699

График функции y(x)= −x4+ 2x3+3x2− 8x+ 3
                   3  имеет две точки максимума и одну точку минимума. К графику провели касательную с двумя точками касания. Найдите длину отрезка касательной между точками касания.

Показать ответ и решение

Пусть g(x)=kx +b  — касательная из условия и x ,x
 1  2  — координаты точек касания на оси x.

Так как y(x)− g(x) =0  в точках касания, то они являются корнями чётной кратности данного многочлена (y(x)− g(x)).  Также в силу того, что коэффициент при старшей степени x  равен − 1,  можем представить многочлен в следующем виде:

                 2      2
y(x)− g(x) =− (x− x1)(x− x2)

Назовем правую часть f(x),  тогда:

            2      2    4          3   2         2 2                 2 2
f(x)= −(x− x1) (x − x2) = −x + 2(x1+ x2)x − (x1+ 4x1x2 +x2)x +2x1x2(x1+ x2)x− x1x2

Запишем полученные для функций условия в точках касания в систему:

(||              4   3    2  (8   )
||{  y(x)− g(x)= −x + 2x  +3x −  3 + k x +3− b
||  f(x)= −x4+ 2(x1+ x2)x3− (x2 +4x1x2+x2)x2+2x1x2(x1+ x2)x − x2x2
||(  y(x)− g(x)= f(x)         1         2                   1 2

Из равенства коэффициентов следует:

(||  2= 2(x1+ x2)
|||||
||{  3= −(x21+ 4x1x2+x22)
||   (8   )
|||||  − 3 + k = 2x1x2(x1+x2)
||(  3− b= −x2x2
          1 2

Отсюда можно выразить x1+x2  и x1x2  :

{ x1+ x2 =1
  x1x2 =− 2

То есть x1 = 2,  x2 =− 1.  Теперь можно найти коэффициенты k  и b:

(
|{  k= 4− 8= 4
|        3  3
(  b= 3+4 =7

Получается, что       4
g(x)= 3x+7.

Значения касательной в точках касания:

       4       29
g(x1)= 3 ⋅2+ 7= 3

g(x2)= 4 ⋅(−1)+ 7= 17
      3          3

Тогда длина отрезка касательной между точками касания — пусть l:

   ∘--------------------
               (29  17)2  √-----
l=  (2− (− 1))2+  3-− 3-  =  9 +16= 5

Получили искомое значение длины отрезка касательной между точками касания — 5.

Ответ:

5

Ошибка.
Попробуйте повторить позже

Задача 5#106010

Решите уравнение f(f(f(f(x)))) =2x2,  если f(x)= x+1.
     1−x

Показать ответ и решение

Функция f(x)  определена при x ⁄=1.  Функция

         (x +1)   x+1+ 1  x +1+ 1− x  − 1
f(f(x))= f 1-− x = 1−xx+1= 1-− x−-x−-1 =-x
                  1− 1−x

определена при x⁄= 1,x ⁄=0.  Далее

           ( −1)   −x1+ 1  x − 1
f(f(f(x)))= f  x-- = 1−-−1= x-+1,x⁄∈ {−1;0;1}
                      x

             ( x−-1)  -x−x+11+1   x−-1+-x+1-
f(f(f(f(x)))) =f  x+ 1 = 1 − xx−+11 = x+ 1− x+1 = x,,x⁄∈ {−1;0;1}

Тогда получаем при x ⁄=0,x⁄= ±1  уравнение

x= 2x2

x = 0 или x= 1
           2

С учётом ОДЗ только одно значение подходит в ответ.

Ответ:

 1
2

Ошибка.
Попробуйте повторить позже

Задача 6#106504

Найдите функцию f(x)  , о которой известно, что

      ({   (2x+3)
f(x)=  x⋅f  x−2 + 3  при x⁄= 2,
      (0             при x= 2.
Показать ответ и решение

При x⁄= 2  (подставим в аргумент функции 2x+3
 x− 2  ):

           (|       (22x+3+ 3)
  (2x+-3)  |{ 2xx+−32-⋅f  -x2x−+23---- + 3, 2xx+−32-⁄= 2
f  x − 2 = ||(         x−2 − 2      2x+3
            0,                    x−2-= 2

Заметим, что 2x+3
 x−2 ⁄= 2,  так как 2x+ 3⁄= 2x − 4  .

Следовательно, при x⁄= 2  :

 (     )          (22x+3+ 3)
f 2x+-3  = 2x-+3-⋅f -2x−x+32--- + 3.
   x− 2    x− 2     x−2 − 2

Преобразуем аргумент f  в правой части, получим:

 (2x+ 3)   2x +3
f -x−-2  = x−-2-⋅f(x)+ 3.

Подставим полученное выражение для  (    )
f  2xx+−32- в условие задачи. Получим, что при x ⁄=2  :

       (2x+-3       )
f(x)= x  x− 2 ⋅f(x)+3 +3.

    (   x(2x +3))
f(x) 1− -x-− 2- = 3x+ 3

Проверим, когда выражение (        )
 1− x(2xx+−32)- принимает нулевое значение. Это происходит только при x− 2= x(2x+ 3),  то есть 2x2+ 2x+2 =0  . Этот трёхчлен не имеет вещественных корней, поскольку его старший член положительный, а дискриминант отрицательный. Разделим обе части на это выражение:

f(x)= --3x+-3-- =− 3(x-+1)(x-− 2).
     x−2−x2−x22−3x     2(x2+ x+ 1)

Заметим, что получившаяся функция при x= 2  удовлетворяет условию, поскольку f(2)= 0  . Следовательно, это и есть ответ.

Ответ:

 f(x)= − 3(x-+1)(x-− 2)
        2(x2+ x+ 1)

Ошибка.
Попробуйте повторить позже

Задача 7#76651

Найдите количество функций f :{1,2,3,4,5,6} → {1,2,3,4,5,6} для которых верно f(f(f(x)))=x  для всех x∈ {1,2,3,4,5,6} .

Источники: ЮМШ-2023, 11 класс, отборочный тур (см. yumsh.ru) | ЮМШ-23/24, 11 класс, 1 отборочный тур (см. yumsh.ru)

Показать ответ и решение

Возьмем какое-нибудь число a ∈{1,2,3,4,5,6}.  Тогда возможны два варианта:

1. Если f(a)= a,  то и f(f(f(a)))= a.

2. Предположим f(a)= b и b⁄= a.  Тогда f(b)= c, где c⁄= a,c⁄= b.  Иначе
(а) Если f(b)= a, то f(f(f(a)))= f(f(b)) =f(a)=b ⁄=a.
(b) Если f(b)= b, то f(f(f(a)))= f(f(b))= f(b) =b⁄= a.
И так как a =f(f(f(a)))= f(f(b))= f(c),  то f(c)=a.

Таким образом, для любого a∈ {1,2,3,4,5,6} либо f(a)=a,  либо есть три различных числа таких, что f(a)= b,f(b) =c и f(c)= a.

При этом любая функция с таким свойством подходит. Тогда найдем число функций с необходимым свойством.

1. Нет ни одной тройки элементов, что f(a)= b,f(b)= c, и f(c)= a.  Значит, для всех чисел a∈{1,2,3,4,5,6} верно f(a)= a.  Такая функция одна.

2. Есть одна тройка элементов, что f(a)= b,f(b)= c, и f(c)=a.  Выбрать тройку можно C36  способами. При этом есть два способа задать функцию в тройке. Итого 2C36  функций.

3. Есть две тройки элементов, что f(a)= b,f(b)= c, и f(c)= a.  Выбрать первую тройку можно C36  способами, остальные три элемента образуют вторую тройку. Но варианты, в которых выбрали в первую тройку a,b,c  и выбрали все кроме a,b,c  одинаковые. То есть C36 :2  способов разбить элементы на две тройки. При этом в каждой тройке есть два способа задать функцию. Итого 2⋅2⋅C36 :2 =2C36  функций.

Всего число функций равно

1 +2C36 + 2C36 = 81
Ответ: 81

Ошибка.
Попробуйте повторить позже

Задача 8#76753

Функция f(x)  при всех действительных x  удовлетворяет равенству

  2      2
(x − 5)f(x +x − 2)= 2x+ f(x)

Найдите значение f(−2).

Показать ответ и решение

Подставим x= 0  и x= −2  в равенство. Получим систему

{  −5⋅f(− 2)=f(0)

   −1⋅f(0)= −4+ f(−2)

Решив которую, получаем f(− 2)= −1.

Ответ:

− 1

Ошибка.
Попробуйте повторить позже

Задача 9#77217

Решите уравнение cos(sinx)− cos(cosx)= cos2x.

Показать ответ и решение

Первое решение. Распишем косинус двойного угла

                   2     2
cos(sinx)− cos(cosx)= cosx − sin x

          2              2
cos(sinx)+sin x =cos(cosx)+cosx

Получаем уравнение вида

f(sin x) =f(cosx),

где f(t)=cost+t2.  Так как

f′(t)= 2t− sint; f′′(t)= 2− cost

вторая производная положительна при любом t  , то первая производная — монотонно возрастающая функция. Тогда f′(t)= 0  имеет не больше одного решения. Точка t= 0  подходит. Также заметим, что f′(t) ≥0  при t≥ 0  и f′(t)≤ 0  при t≤0  . А значит, f(t)  возрастает при t≥ 0  и убывает при t≤ 0  . Кроме того, функция f  чётна. Тогда уравнение f(sinx)= f(cosx)  может иметь решение только в случаях sinx= cosx  или sinx= − cosx  . Решив эту совокупность, получим

x= π + πk, k ∈ℤ
   4   2

________________________________________________________________________________________________________________________________________________________________________________________________________________

Второе решение.

Левую часть уравнения преобразуем по формуле разности косинусов, правую — по формуле косинуса двойного аргумента:

    (         )    (         )
−2sin  sinx+-cosx- ⋅sin  sinx−-cosx- = −(sin2 x− cos2x)
          2             2

В правой части применим формулу разности квадратов и введём обозначения:

   sinx +cosx    sin x− cosx
a= ----2----; b=----2----

Тогда наше уравнение запишется в виде

2sina ⋅sinb= 2a ⋅2b

sina⋅sinb= 2ab

Перенесём всё в правую часть и вынесем множитель ab, (ab ⁄=0)

  (   sina sinb)
ab 2 −--a-⋅-b-  = 0

Ясно, что выражение в скобках строго больше 1 в виду неравенства |sintt|< 1 при t ⁄= 0.

Значит, при ab⁄= 0  уравнение решений не имеет, то есть оно может иметь решения только при a= 0  или b=0.

Проверяем эти значения подстановкой в уравнение sina⋅sinb =2ab  и убеждаемся, что при этих значениях уравнение верно.

Делаем обратную замену и получаем ответ x = π4 + π2k, k∈ ℤ.

Ответ:

 π + πk, k∈ ℤ
 4  2

Ошибка.
Попробуйте повторить позже

Задача 10#79607

Функция f  , определённая на действительных числах, принимает действительные значения. Известно, что для любых действительных   x  и y  выполнено равенство f(x)f(y)=f(5x− y)  . Найдите все такие функции f  .

Источники: ОММО - 2024, задача 9 (см. olympiads.mccme.ru)

Показать ответ и решение

Если при каком-то x  выполняется f(x)= 0,  то для любого y  верно f(5x− y)= 0,  поэтому для любого y  выполняется f(y)=0.

Если же f(x)⁄= 0  для любого значения x  , то для любого y =4x  должно быть выполнено

f(x)f(y)= f(x),

где после сокращения на f(x)⁄= 0  получаем f(y)= 1.

Ответ:

Таких функции две: константа 0 и константа 1. (f(x)≡1, f(x)≡ 0  )

Ошибка.
Попробуйте повторить позже

Задача 11#82782

Функция y =f(x)  такова, что

 (x-− 1)   --1-
f x +1  = −x+ 1

Найдите тангенс угла наклона касательной к графику функции

g(x)= f◟(f(...f◝(◜x)...))◞
           9

в точке x= 0  .

Источники: Ломоносов - 2024, 11.5 (см. olymp.msu.ru)

Показать ответ и решение

Преобразуем выражение аргумента

 (x-− 1)   --1-
f x +1  = −x+ 1

 (        )
f  1− -2-- = −--1-.
      x+ 1    x +1

Выполним замену y = 1− 2x+1.  Тогда − 1x+1-= y−21  , следовательно, для любого y  верно, что

f(y)= y − 1∕2.
     2

Тем самым, мы показали, что функция f(x)  имеет вид x+ C
2  , где C  — некоторая постоянная, которая не зависит от x  , тогда

        (x +C )
f(f(x))= -2-----+ C = x + 3C,
           2         4  2

следовательно, f(f(x))= x+ C
        4  для некоторой новой постоянной C  . Аналогично,

g(x)= f(f(...f(x)...))= -x9 +C = -x-+C.
     ◟    ◝◜9    ◞  2       512

Осталось заметить, что тангенс угла наклона в точке 0 равен значению производной функции в точке 0, так что

       x        1               1
g′(x) =(512 + C)′ = 512 =⇒  g′(0)= 512-
Ответ:

-1-
512

Ошибка.
Попробуйте повторить позже

Задача 12#83858

a) Существует ли функция f(x),  заданная на всей числовой оси такая, что

 (    1)   2
f  x− x  =x ?

б) Существует ли такая функция, заданная для x> 0?

Источники: КФУ - 2024, 11.5 (см. malun.kpfu.ru)

Показать ответ и решение

а) Предположим, что такая функция существует. Тогда подстановкой x =2  и x =− 1∕2  в условие задачи

 3   (   1)    2
f(2)=  2 −2  = 2

      (        )  (   )2
f(3)=  − 1− (−2) =  − 1  = 2−2
  2      2           2

получаем противоречие

б) Если существует, то снова возникает противоречие при x =1,5> 0  с неоднозначностью f(1,5).  Этот пункт проверяет лишь понимание, что положительный x  должен быть для f(x)  , а не для условия на  (    1)
f  x− x .

Ответ:

а) нет

б) нет

Ошибка.
Попробуйте повторить позже

Задача 13#85487

Существует ли на координатной плоскости точка, относительно которой симметричен график функции f(x)= -1--
      2x+1  ?

Источники: ММО - 2024, второй день, 11.1 (см. mmo.mccme.ru)

Показать ответ и решение

Покажем, что функция g(x)= f(x)− 1
           2  является нечётной. Действительно,

      ---1--   1  -2x--  1  1   -1---
g(− x) =2−x +1 − 2 = 2x+ 1 − 2 = 2 − 2x +1 =− g(x).

Следовательно, график функции g  симметричен относительно начала координат, а график функции f  симметричен относительно точки (   )
 0,12 .

Ответ: да

Ошибка.
Попробуйте повторить позже

Задача 14#85549

Найдите f(2024)  , если

f(x)=|2x− 1|− |2x− 3|+6 при x∈ [0;2]

и, кроме того, при всех целых значениях x  выполняются неравенства

f(x+ 3)≤ f(x)+ 6 и f(x+ 2)≥f(x)+ 4

Источники: ПВГ - 2024, 11.2 (см. pvg.mk.ru)

Показать ответ и решение

Отметим, что f(0)= 4,f(1)= 6,f(2)= 8  . По условию, с одной стороны,

f(x+ 6)≤f(x+ 3)+6 ≤f(x)+12,

а, с другой стороны,

f(x+ 6)≥f(x+ 4)+4≥ f(x+ 2)+ 8≥ f(x)+ 12

Поэтому f(x+ 6)=f(x)+ 12  и, более того, все неравенства выше обращаются в равенства.

Поэтому f(x+ 3)=f(x)+ 6,f(x+ 2)= f(x)+4  и f(x+ 1)= f(x)+2  .

Таким образом, искомая функция - это функция f(x)= 4+ 2x  при целых значениях x  .

Кроме этого, известны значения функции на отрезке [0;2]  .

Значит, f(2024)=4+ 2024⋅2 =4052  .

Ответ: 4052

Ошибка.
Попробуйте повторить позже

Задача 15#85551

Решите уравнение

                            2
36cos(x+ cosx)cos(x− cosx)+ 9= π

и найдите сумму его корней, принадлежащих отрезку [π;7π]
 3 4 .

Источники: ПВГ - 2024, 11.3 (см. pvg.mk.ru)

Показать ответ и решение

Пользуясь формулами преобразования произведения в сумму, получаем

                π2  1
cos2x+ cos(2cosx)= 18 − 2

Пусть t=cosx  , тогда левая часть уравнения равна       2
f(t)= 2t − 1+ cos2t  . Функция f  возрастает на [0;1]  (так как  ′
f (t)= 2(2t− sin2t  ) >0 при t>0  ) и является чётной, причём   (π)  π2  1
f  6 = 18 − 2  . Следовательно, корнями уравнения      π2  1
f(t)= 18 − 2  на отрезке [−1;1]  являются числа     π
t= ±6  . Возвращаясь к переменной x  , находим

         π
x= ±arccos6 +πn,n∈ Z

Так как

        √ -
π = arccos--2< arccosπ< arccos1= π ,
4        2        6       2  3

то на указанный отрезок попадают корни π− arccosπ,π+ arccosπ
     6         6  и 2π− arccos π
         6  . Их сумма равна 4π− arccosπ
         6  .

Ответ:

 x =± arccosπ+ πn,n ∈Z
          6  .

Сумма корней равна          π
4π − arccos6.

Ошибка.
Попробуйте повторить позже

Задача 16#85909

Функции f  и g  заданы формулами

f(x)= ax +b,g(x)= bx+a,

где a  и b  — некоторые натуральные числа, причём

f(g(x))− g(f(x))= 2024

Чему могут быть равны числа a  и b  ?

Источники: ФЕ - 2024, 11.1 (см. www.formulo.org)

Показать ответ и решение

Условие равносильно выполнению равенства

a(bx+ a)+b − (b(ax+ b)+a)= 2024

 2     2
a + b− b − a =2024

(a− b)(a+ b− 1)= 2024

Поскольку 2024 =23⋅11⋅23  , и значения выражений a− b  и a +b− 1  разной чётности, второе из них положительно и больше первого, то остаётся рассмотреть только четыре варианта:

a − b  1 8 11 23
a+ b− 1  2024 253 184 88

Соответствующие пары значений ( a,b  ) таковы: (1013;1012),(131;123),(98;87),(56;33)  .

Ответ:

 (1013;1012),(131;123),(98;87),(56;33)

Ошибка.
Попробуйте повторить позже

Задача 17#86476

За время освоения космического пространства на различных орбитах скопилось по данным NASA около 300 тысяч объектов космического мусора. Дальнейшее использование космического пространства в ближайшем будущем может быть существенно осложнено всё возрастающей угрозой столкновения с космическим мусором. Согласно результатам исследований, удаление 3-5 крупных объектов в год с низких околоземных орбит позволяет предотвратить цепную реакцию роста объектов космического мусора в будущем. На данный момент работающей технологией по утилизации космического мусора является увод старых спутников. Это можно сделать с помощью аппаратов-захватчиков, которые буксируют мусор на орбиты для захоронения.

Рассмотрим плоскость орбиты захоронения. Пусть крупный фрагмент мусора движется в этой плоскости по эллиптической орбите с большой полуосью равной 5000 км, малой - 2500 км. (Для удобства вычислений все расчеты будем производить в тысячах километров.) Введем систему координат с началом отсчета в центре рассматриваемого эллипса, с осью абсцисс, направленной вдоль большой полуоси. Тогда уравнение траектории движения обломка запишется следующим образом: x2+ 4y2 = 25  .

На некотором удалении по оси абсцисс находится межпланетная научная станция S  . С нее стартует летательный аппарат-захватчик, который движется по параболической траектории: (y+ 1)2 =− 9⋅(x − 7)∕4  . Он должен совершить маневр по переходу с одной орбиты на другую и плавно подойти к обломку для изменения его скорости и направления движения.

PIC

Определите координаты точки касания указанных траекторий и угол, который образует с положительным направлением оси абсцисс касательная к параболической траектории в начальный момент времени в точке S  .

Источники: ШВБ - 2024, 11.6 (см. olymp.bmstu.ru)

Показать ответ и решение

Выразим из уравнений

 2   2           2     x−-7
x + 4y = 25 и (y +1) = −9⋅ 4

функции в явном виде:

     ∘------
y =±   25-− x2-и y = −1± ∘ −9⋅(x− 7)∕4
         4

Найдём их производные:

 ′   1-(−2x)-   ′   1---(−9)---
y =± 4√25−-x2 и y =± 4∘ −9⋅(x−-7)

Приравняем производные друг к другу:

± 1√(−2x)-= ±1 ∘--(−9)---
  4 25− x2   4  − 9⋅(x− 7)

√-2x--2 = ∘---9-----
 25− x     −9⋅(x− 7)

-4x2--  -9--
25 − x2 = 7− x

28x2− 4x3 =9 ⋅25− 9x2

Будем искать целые решения уравнения. Если такие есть, то они являются делителями свободного члена.

x= 3  подходит. Преобразуем уравнение, поделив на x− 3  , получим

      ( 2        )
(x− 3)4x − 25x − 75 = 0

     (    25 +5√73) (   25− 5√73)
(x− 3) x −---8----  x− ---8---- = 0

Но 0< x< 7,  поэтому подходит только x= 3  . Подставляя x= 3  в любое из исходных выражений, находим y = 2  . Значит, координаты точки касания это (3;2).

Теперь вычислим тангенс для точки S  с оси абсцисс. При y =0  из (0 +1)2 = −9⋅(x − 7)∕4  получаем абсциссу x = 599 .  Подставляем в производную и находим тангенс угла касательной в начальный момент:

                    (   )
y′ = ±1∘--(−9)----=±  −-9
     4  −9⋅(x− 7)      8

[      9
  tgα= 8 9
  tgα= − 8

[ α= arctg(9)
  α= arctg(−89)= π− arctg (9)
           8          8
Ответ:

координаты (3;2)

угол может быть       (9)
± arctg 8 (две касательных из точки S  )

Ошибка.
Попробуйте повторить позже

Задача 18#88706

Функция f(n)  определена для целых положительных чисел, удовлетворяет условию f(1)= 1  и двум соотношениям

f(3n)= 3f(n), f(3n+ 1)= 9f(n)

Найдите числа n  , удовлетворяющие равенству f(n) =81.

Источники: САММАТ - 2024, 11.4 (см. sammat.samgtu.ru)

Показать ответ и решение

Используя равенство f(1)= 1  и соотношения, получаем f(3)= 3,f(4)= 9  . Далее, используя эти равенства, получаем f(9)=9,f(10)= 27,f(12) =27,f(13)= 81  . Значит, n = 13  подходит.

Используя остальные равенства, получим

f(27)=27, f(28)=81, f(30)= 81, f(31)= 243, f(36)= 81, f(37)= 243.

Таким образом, n= 28,30,36  подходят, а продолжая цепочку из равенств f(31)=243  и f(37)= 243,  мы уже не получим 81  . Осталось равенство f(27)=27  , откуда f(81)= 81,f(82)= 243  .

Ответ: 13, 28, 30, 36, 81

Ошибка.
Попробуйте повторить позже

Задача 19#90278

a) перестановка f  чисел {0,1,...,6} задана таблицей:

x  0 1 2 3 4 5 6
f(x)  3 2 4 0 5 6 1

Например, f(2)= 4  . Найдите две различные перестановки g  и h  такие, что для всех x ∈{0,1,...,6} выполняется

f(x)≡ (g(x)+h(x))(mod7)

b) перестановка f  задана на чётном количестве чисел {0,1,...,2n− 1} таблицей:

x  0 1 2 .. 2n− 2  2n− 1
f(x)  i0  i1  i2  .. i2n−2  i2n−1

Здесь (i0,i1,...,i2n−1)  - перестановка чисел {0,1,...,2n− 1} .

Докажите, что не существует перестановок g  и h  таких, что для всех x∈ {0,1,...,2n− 1} выполняется f(x)≡(g(x)+ h(x))(mod (2n))?

Источники: Верченко - 2024, 11.3 (см. ikb.mtuci.ru)

Показать доказательство

а) Так как НОД (2,7) =НО Д(6,7)=1,  то g(x)≡ 2f(x)(mod7)  и h(x)≡ 6f(x)(mod7)  являются перестановками. Но тогда, например, g(x)=2f(x),h(x)=6f(x)  и выполняется

g(x)+ h(x)=2f(x)+6f(x)≡f(x)(mod7)

b) Из условия получим

2∑n− 1     2n∑−1
    f(x)=    x = (2n+ 1)n =n(mod(2n))
i=0      i=0

С другой стороны, если указанное условии пункта b) представление существует, то

2∑n−1     2∑n− 1    2n∑−1
    f(x)=    g(x)+    h(x)=2(2n+ 1)n≡ 0(mod(2n)),
i=0      i=0      i=0

а это доказывает невозможность указанного представления.

Ошибка.
Попробуйте повторить позже

Задача 20#90321

Найдите все функции f :ℝ → ℝ  такие, что

                              2   2
(x − y)f(x +y)− (x +y)f(x − y)= 4xy(x − y)
Показать ответ и решение

Сделаем замену переменных a= x− y,b=x +y.  Функциональное уравнение примет вид

af(b)− bf(a)= (a +b)(b− a)ab

Разделим обе части уравнения на ab,  после чего расскроем скобки в правой части. Таким образом,

f(b)  f(a)-  2   2
 b −  a  =b − a

следовательно,

f(b)  2   f(a)   2
-b-− b = -a-− a

Зафиксируем значение a.  Тогда для любого значения b,

f(b)
-b-− b2 =C

для некоторого действительного C.  Таким образом,

f(b)=Cb +b3

Наконец, покажем, что для всех действительных C  данная функция удовлетворяет исходному уравнению

 (      )  (      )
a Cb+ b3 − b Ca +a3 = ab3− ba3 = ab(a− b)(a +b)
Ответ:

 f(x)= Cx+ x3

Рулетка
Вы можете получить скидку в рулетке!