Логарифмические, показательные, рациональные неравенства на Ломоносове
Ошибка.
Попробуйте повторить позже
Найдите все такие наборы чисел , что
и при всех
выполнено равенство
Можно переписать данное уравнение так:
Отсюда следует, что для любого
от 1 до
и так как
, то
верно для любого
. Заметим,
что если
для некоторого
, то
,
и т. д. и тогда для любого
верно
. Аналогично, если
для некоторого
, то тогда для любого
верно
. Далее будем считать, что
.
Предположим, что для некоторого верно, что
. Тогда из равенства
следует,
что
и
. Отсюда следует, что
положительное и
больше 3. Аналогично, из этого следует, что
,
положительное и больше 3 и т. д. Но
тогда
Аналогично, в случае когда для некоторого верно, что
, то для последующих
будет последовательно
устанавливаться, что
,
отрицательное и меньше -3.
Ошибка.
Попробуйте повторить позже
Решите неравенство
Источники:
ОДЗ:
На ОДЗ а по формуле разности косинусов
По методу рационализации знак на ОДЗ совпадает со знаком
В итоге получаем неравенство
На ОДЗ
поэтому
Учтём решение сразу запишем в ответ. Остаётся неравенство
На ОДЗ
поэтому неравенство равносильно
Ошибка.
Попробуйте повторить позже
Решите неравенство
Перепишем неравенство
Отсюда ОДЗ: . То есть
и
.
Здесь , потому можно преобразовать неравенство
Применим метод рационализации, выражение слева можно заменить на
Осталось упорядочить корни, учесть, что и заключить
. Здесь
исключаются,
поскольку не входят в ОДЗ.
Ошибка.
Попробуйте повторить позже
Решите неравенство
Источники:
ОДЗ :
Сделаем преобразования:
Используя ограничение из ОДЗ, имеем два случая:
1) При
где причем
2) При
Объединяя промежутки, получаем:
Ошибка.
Попробуйте повторить позже
Решите неравенство
Обе части неравенства неотрицательны, поэтому спокойно возводим в квадрат, не забыв про ОДЗ
Заметим, что все решения неравенства, удовлетворяющие , будут удовлетворять и
, поэтому решать
отдельно второе неравенство и находить в явном виде ОДЗ избыточно.
Получаем:
Ошибка.
Попробуйте повторить позже
Решите неравенство
Источники:
По формуле разности квадратов . Поэтому неравенство эквивалентно
Так как основание степени слева и справа одинаковое и меньше единицы (ведь то неравенство
равносильно
Остаётся провернуть тот же фокус, используя . Получим
Так как
В итоге по методу интервалов
Ошибка.
Попробуйте повторить позже
Решите неравенство
Запишем ОДЗ: Домножим обе части на положительное
и получим
Левая часть не положительна при
Значит, при неравенство выполнено. Если же
то обе части полученного неравенства положительны, то есть
его можно возвести в квадрат:
Делаем замену и получаем
Заметим, что поэтому берем второй луч и делаем обратную замену:
Пересекаем с нашим случаем
В итоге получаем, что
Ошибка.
Попробуйте повторить позже
Решите неравенство
Источники:
Ограничения:
Рассмотрим неравенство вида . Домножим обе части на
Этот переход действительно равносильный, так
как
— решение.
Тогда на ОДЗ получившееся неравенство равносильно
Пересекая с получаем ответ.
Ошибка.
Попробуйте повторить позже
Решите неравенство
ОДЗ: Рассмотрим два случая раскрытия модуля:
В первом случае
На данном промежутке слева возрастающая функция, а справа — убывающая. Равенство достигается при поэтому неравенство
выполняется при
Во втором случае
При выражение справа отрицательное, а слева положительное, поэтому решений у неравенства нет.
Ошибка.
Попробуйте повторить позже
Решите неравенство
Источники:
После замены получаем неравенство
которое эквивалентно
По методу интервалов получаем
При обратной замене получаем
Ошибка.
Попробуйте повторить позже
Решите неравенство
Источники:
Выпишем ОДЗ этого неравенства:
Заметим, что является решением неравенства. Значит, далее можно считать, что
Рассмотрим два случая:
- 1.
-
Раскроем модуль, разделим обе части на положительное число
Тогда с учетом ОДЗ в этом случае
- 2.
-
Раскроем модуль, разделим обе части на отрицательное число
Тогда с учетом ОДЗ в этом случае получаем, что Объединяя все решения в итоге получим, что