Тема КФУ (олимпиада Казанского Федерального Университета)

Функции на КФУ

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела кфу (олимпиада казанского федерального университета)
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#129311

Вовочке задали на дом квадратное уравнение. «Учитель сказал, что оно имеет два целых корня, а у меня получается, что корней нет» — пожаловался он. Его папа-математик, посмотрев на уравнение, сказал: «Ты, наверное, неправильно списал с доски один из коэффициентов. Если это так, то я знаю правильный вариант задания, причем он единственный».

Докажите, что, если папа прав, то свободный член уравнения Вовочка записал верно.

Источники: КФУ - 2025, 10.3 (см. malun.kpfu.ru)

Показать доказательство

Пусть Вовочка записал уравнение в виде

 2
ax  +bx+ c= 0

и оно не имеет корней. Предположим, что можно заменить свободный член так, чтобы у уравнения появились два целых корня. Пусть верное задание имеет вид

ax2+ bx +c = 0
         1

корни его обозначим x1,x2.  По теореме Виета

b=− a(x1+ x2), c1 = ax1x2

То есть n= x1+x2 =− ba  — целое число. Сохраняя эту сумму, можно менять корни и, соответственно, их произведение. То есть в качестве c1  можно рассмотреть числа 0, a⋅1⋅(n− 1),  a ⋅2 ⋅(n− 2)  и т.д. Итак, в этом случае исправление не единственное.

Например, пусть Вовочка решал уравнение

1x2+ x+ 1=0
2

Здесь n =− 2.  Значит, «восстановленное» уравнение может иметь вид

1x2+x +0 =0,
2

1x2 +x− 3 =0,
2       2

1 2
2x + x− 4=0

Папа не смог бы сказать, которое из них было задано на дом.

Мы показали следующий факт: если можно исправить уравнение за счёт свободного члена, то это исправление не единственное. Вообще говоря, надо ещё показать, что ситуация, описанная папой, возможна. Например, рассмотрим уравнение

3x2+x +2 =0

Если не менять первый коэффициент, то новое уравнение имеет вид

 2
3x + b1x+c1 = 0,

где либо b1 = 1,  либо c1 = 2.  Но тогда числа b13-=− (x1+ x2)  и c13-=x1x2  не могут быть оба целыми. Значит, уравнение нельзя исправить за счет второго или третьего коэффициента, так как ни один из них не делится на 3. Попробуем найти «правильный» коэффициент a.  Ясно, что он должен быть делителем как 1, так и 2, то есть подходят только a =1  и a =− 1.

Уравнение

 2
x + x+ 2= 0

не имеет решений, а уравнение

−x2+ x+ 2=0

имеет целые корни x =− 1  и x =2.  Именно оно и будет единственным возможным исправлением исходного уравнения.

Замечание. Без условия целочисленности корней утверждение задачи также будет верным. Однако без этого ограничения неверным будет высказывание папы, так что из него может следовать что угодно.

Ошибка.
Попробуйте повторить позже

Задача 2#83858

a) Существует ли функция f(x),  заданная на всей числовой оси такая, что

 (    1)   2
f  x− x  =x ?

б) Существует ли такая функция, заданная для x> 0?

Источники: КФУ - 2024, 11.5 (см. malun.kpfu.ru)

Подсказки к задаче

Пункт а, подсказка 1

Функция может принимать при разных абсциссах одни и те же значения, но бывает ли наоборот? Может ли функция при одной абсциссе иметь два значения?

Пункт а, подсказка 2

Такое сложное выражение внутри функции для абсцисс, может ли оно быть равно одному значению при подстановке разных x?

Пункт а, подсказка 3

Заметим, что в выражении «x - 1/x» есть переменная и обратная к ней, а что если в место переменной подставить сразу обратную, то есть (1/x) - 1/(1/x) = 1/x - x. Получилось, что-то очень похоже на изначальное выражение, может только поменять знак?

Пункт а, подсказка 4

Используя предыдущий факт, внимательно посмотрите на два равенства, получаемых при подстановке в функцию, например, x = 2 и x = -½. Придите к противоречию.

Пункт б, подсказка

Обратите внимание, что положительный x должен быть для f(x), а не для условия на f(x - 1/x).

Показать ответ и решение

а) Предположим, что такая функция существует. Тогда подстановкой x =2  и x =− 1∕2  в условие задачи

 3   (   1)    2
f(2)=  2 −2  = 2

      (        )  (   )2
f(3)=  − 1− (−2) =  − 1  = 2−2
  2      2           2

получаем противоречие

б) Если существует, то снова возникает противоречие при x =1,5> 0  с неоднозначностью f(1,5).  Этот пункт проверяет лишь понимание, что положительный x  должен быть для f(x)  , а не для условия на  (    1)
f  x− x .

Ответ:

а) нет

б) нет

Ошибка.
Попробуйте повторить позже

Задача 3#68975

Обозначим min-x−1= a;max-x−1-= b.
   x2+1       x2+1  Найдите, чему равны минимум и максимум функций:

    x3− 1
а)  x6+1-

б)  xx+2+11-

Источники: КФУ-2023, 11.3 (см. kpfu.ru)

Подсказки к задаче

Пункт а), Подсказка 1

Понятно, что если изначальное выражение обозначить за f(x), то теперь у нас выражение f(x³). Изменится ли минимум и максимум такой функции?)

Пункт б), Подсказка 1

Теперь попробуйте рассмотреть выражение f(-x). Оно будет почти таким же, как наше выражение, и задача решится)

Показать ответ и решение

Введём обозначение x−1-= f(x).
x2+1

a) Имеем x3−1    3
x6+1 = f(x )  . Величина  3
x  пробегает все числовые значения, значит,   3
f(x )  принимает такие же значения, как f(x).

б) Имеем        −x−1    x+1
f(−x)= x2+1-= −x2+1  , то есть x+1
x2+1 = −f(−x)  , значит, эта функция принимает значения от − b  до − a.

Ответ:

а) a,b

б) − b,−a

Ошибка.
Попробуйте повторить позже

Задача 4#68994

Рассмотрим алгебраическое выражение F (a,...,x),  содержащее переменные, скобки и операции умножения и вычитания. Числовые константы не используются. Заменим один из знаков операции на ⊥,  другой — на ⊳⊲.  Назовем полученное выражение «формулой». Например, формулой будет выражение (a⊳⊲b)⊥ c,  причем один из знаков обозначает разность, а другой - умножение.

а) существует ли формула, которая при любых значениях переменных (и любом из смыслов знаков) дает значение 0?

б) существует ли формула, которая при любых значениях переменных дает значение 1 ?

Источники: КФУ-2023, 11.5 (см. kpfu.ru)

Подсказки к задаче

Пункт а), Подсказка

Попробуйте придумать такую формулу, в которой будет содержаться только одна переменная. Для этого надо вспомнить, когда a*a (где * - операция) дает ноль в разных случаях)

Пункт б), Подсказка

А теперь подумайте про четность чисел, и как она меняется или не меняется в зависимости от операций и от самих чисел) Вдруг можно подобрать такие числа что никогда не будет 1...

Показать ответ и решение

a) Рассмотрим формулу A= a ⊥a  . Если ⊥ - вычитание, то выражение тождественно равно 0  . Если ⊥ - умножение, то A= 0  при a =0  . Поэтому выражение N =(a⊥ a)⊳⊲ (a ⊥a)  равно 0  при любом смысле знаков ⊥ и ⊳⊲  . Действительно, если ⊥ - вычитание, то N = 0⋅0= 0  . Если же ⊥ - умножение, то ⊳⊲  - вычитание, тогда N = a⋅a− a⋅a= 0  .

б) Предположим, что переменным a,b,...  приданы четные значения. Тогда и a⊳⊲b  , и a⊥ b  , также являются чётными. Поэтому при таких значениях переменных любая формула имеет чётное значение.

Ответ: а) Да; б) Нет

Ошибка.
Попробуйте повторить позже

Задача 5#65457

Функция f  для всех действительных x,y  удовлетворяет неравенствам

f(x+ y) ≥f(x)+f(y),  f(x)≥ x

Найдите все такие функции f(x)  .

Показать ответ и решение

Заметим, что f(x)= f(x+0)≥ f(x)+ f(0)  , то есть 0≥ f(0)  . С другой стороны f(0)≥ 0  по условию, а значит, f(0) =0.

Теперь заметим, что f(0)≥ f(x)+ f(−x)≥ 0,  а значит, f(x)+f(−x)= 0.

Теперь запишем неравенство f(− x)≥− x.  Зная, что f(−x)= −f(x),  получаем неравенство − f(x)≥ −x,  то есть x ≤f(x)≤x.

Следовательно, f(x)= x.

Ответ:

 f(x)= x

Ошибка.
Попробуйте повторить позже

Задача 6#91880

Существует ли такая непостоянная функция f(x)  , заданная на всей числовой оси, что при всех действительных x  выполняется равенство

(a) f(sinx)+ f(cosx)=1  ;

(b) f(sinx)− f(cosx)=1  ?

Источники: КФУ - 2021, 11.2 (см. malun.kpfu.ru)

Подсказки к задаче

Пункт а, подсказка

Для каждого из двух пунктов нужно либо привести пример такой функции, либо предположить её существование и прийти к противоречию. В пункте (а) если это верно, то на всей числовой прямой должно выполняться такое тождество для суммы функций синуса и косинуса одного и того же аргумента. Мы знаем не так уж много тригонометрических тождеств!

Пункт б, подсказка 1

По аналогии с (а) подобрать тождество здесь не получается. В аргументах функции f — синус и косинус. Какие значения x можно выбрать, чтобы аргументы функции приняли наиболее простой вид?

Пункт б, подсказка 2

Можно подставить х:=0, тогда синус примет значение 0, а косинус — 1. По аналогии с этим подставим еще одно значение x, и получим противоречие!

Показать ответ и решение

(a) Рассмотрим f(x)= x2,  тогда условие принимаем вид

sin2x+ cos2x= 1

Это основное тригонометрическое тождество, оно верно для любого x.

(b) Допустим, что такая функция есть. Пусть x= 0,  тогда

f(0)− f(1)= 1

Теперь пусть    π
x= 2,  тогда

f(1)− f(0)= 1

Сложим полученные равенства, получим

0= 2

противоречие.

Ответ:

(a) да;

(b) нет

Ошибка.
Попробуйте повторить позже

Задача 7#65461

Функция f(x)  , заданная на всей числовой оси, при всех действительных x  и y  удовлетворяет равенству

f(x)f(y)= f(x − y)

Известно, что f (1) =1
   2  . Чему равно f(2020)?

Источники: КФУ-2020, 11.2 (см. kpfu.ru)

Подсказки к задаче

Подсказка 1

Хочется подставить какие-то числа вместо x и y, чтобы использовать f(1/2)=1.

Подсказка 2

Подставим x=1, y=1/2 и найдём f(1)=1. Теперь хочется подставить что-то вместо y...

Подсказка 3

Подставляем y=1 и получаем рекурренту, из которой легко находится f(2020).

Показать ответ и решение

Положим x= 1,y = 1
        2  , тогда f(1)f(1)= f(1)
     2     2  , откуда f(1)= 1  . Теперь положим y = 1  , тогда f(x)= f(x− 1)  . Теперь очевидно, что f(2020)= f(1)= 1  .

Ответ: 1

Ошибка.
Попробуйте повторить позже

Задача 8#96506

Функция f(x)  задана на всей числовой оси, причём для всех x  выполняются неравенства:

f(x+ 2018)≤ f(x)≤ f(x+ 2019)

a) Придумайте хотя бы одну функцию f(x)  , удовлетворяющую этим условиям.

б) Докажите, что функция f(x)  — периодическая.

Показать ответ и решение

а) Возьмём f(x)=|sin(πx)| . Тогда

f(x+ 2018)= f(x)= f(x+ 2019)

б) Представим x+ 2019  в виде (x +1)+ 2018  и применим первое неравенство из условия задачи, взяв в качестве x  выражение x +1  . Тогда f((x +1)+ 2018)≤ f(x +1)  , и поскольку f(x)≤f(x+ 2019)  , имеем

f(x)≤ f(x+ 1)

Подставив в это неравенство x+1  вместо x  , получим f(x+ 1)≤f(x+ 2)  , и значит,

f(x)≤ f(x+ 1)≤ f(x+ 2)

Повторяя эти рассуждения, получим

f(x)≤ f(x+1)≤ ...≤ f(x +2018)

Но по условию f(x+ 2018)≤ f(x)  . Значит, в приведённой цепочке все неравенства обращаются в равенства, то есть

f(x)= f(x+ 1)= f(x+ 2) =...

Другими словами, функция f(x)  имеет период T =1  .

Ответ:
Рулетка
Вы можете получить скидку в рулетке!