Тема Бельчонок

Неравенства на Бельчонке

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела бельчонок
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#69401

Для положительных чисел x,y,z  докажите неравенство

---z2---  ---x2---  ---y2---  ---xy----  --yz---- ---zx---
x +y+ 2z + 2x+ y+ z + x+ 2y+z ≥ x+ y+2z + 2x +y+ z + x +2y+ z

Источники: Бельчонок-2023, 11.3 (см. dovuz.sfu-kras.ru)

Подсказки к задаче

Подсказка 1

Давайте перенесем всё из правой части неравенства в левую и сложим всё, что имеет одинаковые знаменатели. Получаем в левой части неравенства сумму трех очень похожих дробей, а в правой - ноль. Когда имеется такая конструкция, то часто бывает полезным подумать, как можно оценить каждую дробь по отдельности. К тому же, зачастую, если понять, как оценить одну дробь, то мы сразу будем знать, как оценить и остальные.

Подсказка 2

Рассмотрим дробь (z² - xy) / (x + y + 2z). Когда мы говорим про оценки в неравенствах, то в первую очередь в голову приходят неравенства о средних. В этой дроби мы можем много что оценить, знаменатель или числитель целиком, но давайте воспользуемся неравенством средних для xy, чтобы в числителе получить разность квадратов.

Подсказка 3

Раскрыв в числителе разность квадратов, мы можем сократить равные скобки в числителе и в знаменателе и получить оценку на дробь. Аналогично поступим для каждой дроби. Что теперь мы можем сказать про сумму трех дробей?

Показать доказательство

Неравенство из условия равносильно

-z2-− xy- -x2−-yz-  -y2−-xz-
x+y +2z +2x+ y+ z + x+ 2y+ z ≥ 0

По неравенству о средних xy ≤(x+2y)2,  отсюда после применения формулы разности квадратов имеем

  2
-z-−-xy--≥ (2z−-x−-y)(2z+-x+-y)-= 2z-− x-− y
x+ y+ 2z       4(2z+ x+ y)         4

Аналогично оцениваем два других слагаемых и получаем, что

-z2−-xy-+ -x2−-yz-+ -y2− xz-≥
x+ y+ 2z  2x+ y+ z  x+ 2y +z

  2z− x− y  2y− z− x  2x− y− z
≥ ----4---+ ---4----+ ---4----= 0

мы доказали треубемое.

Ошибка.
Попробуйте повторить позже

Задача 2#69406

Известно, что a,b,c> 0  и a+ b+c= 1.  Докажите, что

-----a-----  -----b----- -----c-----  3
3a2+ b2+ 2ca + 3b2+ c2+ 2ab +3c2+ a2+2bc ≤ 2

Источники: Бельчонок-2023, 11.3 (см. dovuz.sfu-kras.ru)

Подсказки к задаче

Подсказка 1

Если мы бегло посмотрим на условие, то сразу поймем, что приводить к общему знаменателю здесь это очень плохой вариант. В таких случаях бывает полезно оценить каждое слагаемое по отдельности. К тому же мы видим, что они достаточно похожи, возможно, придумав, как оценить одну дробь, мы сразу поймем, как оценить остальные.

Подсказка 2

Давайте внимательно посмотрим на первую дробь. Понятно, что с числителем тут ничего не сделаешь. А вот в знаменателе у нас есть тут целых два квадрата, стоит попытаться выделить полный квадрат. Подумайте, как нам может в этом помочь условие, что a+b+c=1.

Подсказка 3

Давайте в выражении 3a²+b²+2ac представим 3a² как a² + 2a², тогда можно будет вынести общий множитель из 2ac и 2a². Что можно подставить вместо a+c и как при этом будет выглядеть оценка на 3a²+b²+2ac?

Подсказка 4

Если вместо (a+c) подставить (1-b), то после выделения полного квадрата станет понятно, что 3a²+b²+2ac >= 2a. Используя это знание, оцените всю дробь целиком, остальные дроби суммы и саму сумму.

Показать доказательство

Так как a+ c= 1− b,  то 3a2+ b2 +2ca= a2+b2+ 2a(1− b)=2a+ (a− b)2 ≥ 2a.  Следовательно,

----a------ 1
3a2+ b2+ 2ca ≤2

Аналогично

    b       1        c       1
3b2+-c2+2ab ≤ 2; 3c2-+a2+-2bc-≤ 2

Сложив три полученных неравенства, получим

-----a-----+ -----b-----+-----c-----≤ 1+ 1 + 1= 3
3a2+ b2+ 2ca  3b2 +c2+ 2ab  3c2+ a2+2bc  2  2   2  2

Ошибка.
Попробуйте повторить позже

Задача 3#74649

На отрезке [2;5]  выбрали три разные точки, для каждой точки перемножили расстояния до двух других точек, получили положительные числа a,b,c.  Докажите, что

1  1   1  8
a +b + c ≥ 9

Источники: Бельчонок-2022, 11.3 (см. dovuz.sfu-kras.ru)

Подсказки к задаче

Подсказка 1

Какой-то странный у нас отрезок - [2;5]. Быть может, мы сможем его как-то улучшить? Попробуем также расписать выражение из условия с помощью выбранных на отрезке чисел и как-нибудь оценить.

Подсказка 2

[2;5] можно сдвинуть до отрезка [0;3]. Попробуем выразить знаменатель каждой дроби через x, y, z. Теперь можем оценить сумму дробей, увеличив знаменатели. Но как именно?

Подсказка 3

Попробуем "сдвинуть" границы нашего отрезка: x к нулю, а z к 3. Уменьшатся ли знаменатели?

Показать доказательство

Переместим отрезок в точку 0,  то есть будем рассматривать отрезок [0;3].  Обозначим взятые точки 0≤ x< y < z ≤3.  Тогда, т.к. − x ≤0,z ≤ 3,

1  1   1       1           1           1
a +-b + c = (y−-x)(z−-x) + (y−-x)(z−-y) + (z− y)(z-− x)

----1-----+ -----1---- +-----1---- ≥ -1-+ ---1-- +---1---
(y − x)(z − x) (y− x)(z− y) (z− y)(z− x)  y⋅3  y(3− y) (3− y)⋅3

При замене − x  на 0, а z  на 3 все знаменатели увеличились, а обратные им величины уменьшились.

1 (1+ ---3-- +--1-- )= 3−-y+-3+-y= --2---
3  y  y(3− y) (3− y)    3y(3− y)    y(3 − y)

Тогда

  2     8
y(3-− y) ≥ 9 ⇔ (2y− 3)2 ≥0

Ошибка.
Попробуйте повторить позже

Задача 4#73446

Неотрицательные числа a,b,c  удовлетворяют условию

2   2  2
a +b + c +abc= 4

Докажите, что

0≤ ab+ bc+ ac− abc≤ 2

Источники: Бельчонок-2021, 8.5(см. dovuz.sfu-kras.ru)

Показать доказательство

Заметим, что a,b,c  не могут быть все одновременно быть больше 1,  это противоречило бы условию. Пусть, например, a≤ 1.  Запишем ab+ bc +ac− abc= ab+ ac +bc(1− a).  Очевидно, это выражение неотрицательно, и оценка снизу доказана.

Для доказательства оценки сверху рассмотрим три данных числа. Два из них не меньше 1  или два из них не больше 1,  пусть такие числа — это b  и c.  В любом случае (1 − b)(1− c)≥0.

В условии 2   2  2
a +b + c +abc= 4  заменим 2   2
b +c  на не большее выражение 2bc,  получим неравенство  2
a +2bc+ abc≤ 4,  или             2
bc(2+ a)≤ 4− a .  После сокращения получаем bc≤2 − a.  Тогда

ab+ bc +ac− abc≤ ab+ 2− a +ac(1 − b)= 2− a(1− c)(1− b)≤ 2
Рулетка
Вы можете получить скидку в рулетке!