Классические неравенства → .04 Оценки в классических неравенствах
Ошибка.
Попробуйте повторить позже
Положительные числа
не превосходят
Докажите неравенство
Подсказка 1
Рассмотрим числа x-y, y-z и z-x. Могут ли они все быть одного знака?
Подсказка 2
Верно, не могут! Тогда можно рассмотреть два случая: когда положительное среди них ровно одно и когда их два. Что делать в первом случае?
Подсказка 3
Точно! Тогда в сумме из правой части можно оставить только неотрицательное слагаемое для оценки сверху, а оно не превосходит 1. А что делать во втором случае?
Подсказка 4
Если положительных два, то снова оставим только их. А как применить то, что числа не превосходят 1?
Подсказка 5
Верно! Тогда сумма положительных слагаемых не превосходит суммы двух положительных разностей переменных. А что можно сказать об этой сумме?
Сразу понятно, что если все числа равны между собой, то неравенство, очевидно, верное. Давайте рассмотрим числа
Если все они отрицательны, то тогда можно построить цепочку неравенств
, которая, очевидно, неверна. Аналогично будет,
если все они положительны. Если какое-то одно из чисел положительное, а остальные не превосходят нуля, тогда (пусть
Пусть какие-то два из них положительны. Например, первые два. Тогда
Для других случаев доказательство аналогичное.
Ошибка.
Попробуйте повторить позже
Положительные числа
таковы, что
и
Докажите, что из чисел
какие-то два
отличаются более чем на
Подсказка 1
Попробуем вычесть одно равенство из условия из второго. Если теперь разложить на множители, то получится (a-b)(b-c)(c-a)=2. Можно ли теперь как-то упорядочить переменные?
Подсказка 2
Можно! Заметим, что условие содержит циклическую симметрию, и можно считать, что число c является наибольшим. Но тогда из равенства из предыдущей подсказки легко восстанавливается неравенство a < b < c. В условии нас просят рассуждать о разностях, но с ними работать не удобно. Можно ли переформулировать теперь условие, чтобы от этих разностей избавиться?
Подсказка 3
Конечно! Просто сделаем замену z = c-a, x = b-a и y = c-b. Тогда x, y > 0 и z = x + y. А что тогда нужно доказать?
Подсказка 4
Верно! Нужно доказать, что z > 2. Причем у нас есть равенство из первой подсказки, которое примет вид xyz = 2. Как можно применить это равенство для нашего доказательства?
Подсказка 5
Точно! Заметим, что 4xy ≤ (x+y)². Тогда 2 = xyz ≤ z³/4, откуда следует, что 2 ≤ z. Осталось проверить, что не может быть равенства. Как это сделать?
Подсказка 6
Заметим, что если x и y различны, то рассуждения из прошлой подсказки дадут строгое неравенство, и случай z = 2 возникает только при x = y = 1. Тогда по определению x и y: b = a + 1 и c = a + 2. Какое тогда возникает противоречие с исходным условием?
Вычтем из второго равенства первое и разложим левую часть на множители, получим:
Не умаляя общности (в условии имеется циклическая симметрия переменных будем считать, что
наибольшее из данных чисел.
Тогда
но из (*) видим, что
Значит,
Аналогично
Тогда из
следует
Получается
Обозначим так что
тогда
принимает вид
Нам нужно доказать, что
Заметим, что так как это неравенство преобразуется к виду
(или следует из неравенства о среднем
арифметическом и среднем геометрическом). Отсюда
и далее
Получаем откуда
и поэтому
Остаётся показать, что
невозможно. Если
то
и тогда в
предыдущем рассуждении мы получим строгое неравенство
Значит,
возможно лишь при
Рассмотрим этот случай
отдельно.
В этом случае и
Тогда
что противоречит первому равенству из условия задачи.
Ошибка.
Попробуйте повторить позже
Даны положительные числа Докажите, что
Подсказка 1
Нетрудно видеть цикличность неравенства. Тогда можно считать, что y является вторым по величине. Какое тогда выражение заведомо является неположительным?
Подсказка 2
Верно! Это выражение z(y-x)(y-z)! Тогда получаем, что y²z + z²x ≤ xyz + yz². Как с помощью этого неравенства можно оценить правую часть из условия?
Подсказка 3
Точно! Можно получить, что правая часть не превосходит 27y(x+z)² = 108y ((x+z)/2)². Как можно теперь оценить сверху правую часть этого равенства?
Подсказка 4
Верно! Применим неравенство о средних для трех чисел! Что тогда получится?
Поскольку неравенство циклическое, не умаляя общности, пусть — второе по величине число. Тогда
то есть
Используя это неравенство, получаем
Ошибка.
Попробуйте повторить позже
Попарно различные натуральные числа таковы, что для каждых двух из них одно является степенью другого с натуральным
показателем. Найдите наименьшее возможное значения выражения
Источники:
Подсказка 1
Для начала попробуйте придумать какой-нибудь простой пример, это должно натолкнуть на идею для оценки.
Подсказка 2
Идея оценки будет следующей. Давайте упорядочим иксы: a₁ < a₂ < ... и введём обозначения a₂ = a₁^k₁, a₃ = a₂^k₂ для удобства оценки.
Подсказка 3
Попробуйте выбрать из ашек самую длинную возрастающую последовательность. Рассмотрите логарифмы от её членов. Попробуйте их оценить за счёт увеличения основания.
Приведём сначала пример, для которого достигается это число: — любое натуральное число, большее
Переупорядочим наши числа по возрастанию: Тогда:
Соответственно,
К сожалению, мы не можем сказать, что потому что при этом нарушается общность: соседние по возрастанию
элементы не обязательно идут подряд.
Однако, поскольку от циклического сдвига переменных ничего не поменяется, мы можем считать, что Выделим среди чисел
самую длинную возрастающую последовательность. Если точнее
— первый из элементов
больший
— первый из элементов, следующих за
больший
и так далее. Последним элементом этой подпоследовательности будет
— наибольшее среди всех чисел.
Рассмотрим в нашей сумме логарифмов только те логарифмы, аргументами которых являются числа На самом деле,
это все логарфимы из искомой суммы, большие единицы. Основания этих логарифмов назовём
и запишем их
сумму:
Это неравенство верно, поскольку из определения
— первый после
элемент последовательности
больший,
чем
значит, все элементы, находящиеся в последовательности
между
и
(если они есть) меньше, чем
Далее,
Все — натуральные числа, не меньшие
поэтому для любого их набора произведение не меньше суммы. Значит,
а вся сумма из условия тем более не меньше
При этом если какое-то из больше
сумма логарифмов получается больше, чем в приведённом примере. Значит, если существует
какой-то меньший пример, все
для него также должны быть равны
и
Однако из этого не следует автоматически, что все логарифмы из этой суммы равны поскольку
и в этом месте
некоторые из наших неравенство обращаются в равенства. Значит, в нашей сумме логарифмов, больших единицы, есть только двойки и
четвёрки.
Кроме того, в искомой сумме есть как минимум один логарифм, меньший единицы — это логарифм по самому большому основанию. Он
точно не меньше, чем что доказывает оценку.
Ошибка.
Попробуйте повторить позже
Докажите, что при всех натуральных
Подсказка 1
Выпишем первые слагаемые:
Подсказка 2
Есть довольно популярный способ работы с суммами — телескопирование, может оно сработает здесь? Для этого стоит поискать подходящее представление члена ряда, например в виде разности.
Подсказка 3
k/(k+1)! = 1/k! − 1/(k+1)!. Чему в таком случае равна исходная сумма? Почему она меньше 1?
Преобразуем общий член суммы:
Докажем по индукции, что
для всех
База индукции:
Индукционное предположение: пусть для верно:
Индукционный переход: докажем для
Преобразуем добавленный член:
Подставляем индукционное предположение:
По принципу математической индукции,
Поскольку для всех натуральных
получаем:
а значит, и что и требовалось доказать.
Ошибка.
Попробуйте повторить позже
Даны положительные числа Известно, что
Докажите, что
Подсказка 1
Попробуем усилить утверждение: вместо доказательства исходного докажем более сильное неравенство, связывающее произведение и частичную сумму Sₖ = a₁+...+aₖ.
Подсказка 2
Рассмотрим индукцию по k (количеству множителей). Какое соотношение между Pₖ = (1+a₁)...(1+aₖ) и Sₖ может сохраняться на каждом шаге? Также оно должно решить задачу при k = n.
Подсказка 3
По условию имеем Sₙ ≤ 1/2. В крайнем случае 2Sₙ + 1 = 2. Тогда для решения исходной задачи подойдет соотношение Pₙ < 1 + 2Sₙ. Можно ли распространить его на все k ≤ n?
Докажем индукцией по что для всех
от
до
База
Шаг индукции: пусть для неравенство верно:
Тогда для
Таким образом, неравенство доказано для всех натуральных
Ошибка.
Попробуйте повторить позже
Для положительных чисел докажите неравенство
Перенесём дроби из левой части в правую, а из правой — в левую:
Запишем правую часть следующим образом: Теперь
неравенство выглядит так:
Заметим, что:
Если написать такие неравенства для других дробей из правой части и сложить полученные неравенства, мы получим требуемое.
Ошибка.
Попробуйте повторить позже
Докажите, что для любых различных положительных чисел из отрезков с длинами
можно составить треугольник.
Подсказка 1
Можно считать, что a является наибольшим числом, а c — наименьшим. Тогда достаточно доказать неравенство треугольника, в котором корень с разностью (c-a) меньше суммы двух других корней из условия. А как это сделать?
Подсказка 2
Заметим, что сумма корней кубических из (a-b)³ и (b-c)³ равна a-c, а это корень кубический из (a-c)³. А как из этих выражений получить исходные?
Подсказка 3
Верно! Надо умножить их на подходящую дробь (a+b)/(a-b), (b+c)/(b-c) или (a+c)/(a-c). Каждая из этих дробей больше 1, значит, каждое число увеличивается. А можно ли сказать что-то о том, как эти дроби упорядочены?
Подсказка 4
Верно! (a+c)/(a-c) является наименьшей. Какой вывод можно сделать?
Не умаляя общности, пусть — наибольшее число, а
— наименьшее число. Тогда понятно, что из трех выражений
—
наибольшее. То есть достаточно доказать неравенство
Заметим, что
Чтобы из последних выражений получить исходные, достаточно умножить подкоренные выражения на
Поскольку среди чисел и
получаем, что подкоренное выражение справа увеличилось в наименьшее
число раз, а значит, исходное неравенство доказано.
Ошибка.
Попробуйте повторить позже
Положительные числа образуют арифметическую прогрессию (именно в таком порядке). Докажите неравенство
Можно считать, что разность прогрессии равна (иначе все числа можно домножить на одну и ту же константу). Тогда для каждого
имеем
Кроме того
Складывая все полученные неравенства,
получаем
Ошибка.
Попробуйте повторить позже
Даны положительные числа Докажите, что
Поскольку неравенство циклическое, не умаляя общности, пусть — второе по величине число. Тогда
то есть
Используя это неравенство, получаем
Ошибка.
Попробуйте повторить позже
Доказать, что для любых положительных чисел (
) выполняется неравенство
Подсказка 1
Требуется доказать неравенство от n переменных, логично это делать по индукции. Сперва разберёмся с базой n=4. У нас имеется четыре дроби, причём две пары с равными знаменателями. Итого, получается сумма двух обратных чисел, а она больше либо равна двум, например, по неравенству о средних.
Подсказка 2
Теперь надо подумать, что вообще изменяется при шаге индукции. В самом деле, две дроби заменяются на три, притом вообще не очень понятно, какая из сумм больше. Что могло бы помочь их сравнить?
Подсказка 3
Нужно вспомнить о том, что при циклическом сдвиге переменных выражение не изменяется, тогда можем считать, что наша последняя переменная минимальная из всех. Теперь уже сравнить суммы двух и трёх дробей несложно, а значит, мы сможем завершить шаг индукции.
Докажем неравенство индукцией по
База:
Сумма обратных положительных чисел по неравенству о средних между средним арифметическим и геометрическим больше либо равна двух.
Предположение индукции: пусть для утверждение верно.
Переход: докажем для Пусть имеется выражение для
При циклическом сдвиге выражение не меняется,
потому без ограничения общности можем считать, что
минимальное из чисел. Тогда выражение для набора чисел
отличается от выражения с иксами на
В силу и
первая дробь больше либо равна третьей, а вторая больше либо равна четвёртой. Получается
выражение с иксами больше либо равно выражению с игреками, к которому, в свою очередь, можно применить предположение индукции.
Получаем, что и выражение с иксами больше либо равно двух, переход доказан.
Ошибка.
Попробуйте повторить позже
Пусть ,
и
— вещественные числа из отрезка
. Докажите, что
Перенесём слагаемые из левой части в правую:
Сгруппируем слагаемые так, чтобы доказать 3 отдельных неравенства:
Докажем, что:
Для доказательства воспользуемся неравенством при
Тогда, подставив значения
получим:
Заметим, что так как
при
Тогда:
Значит:
Тогда полученное неравенство справедливо и для и
и для
и
Сложим полученные неравенства:
Что и требовалось доказать.
Ошибка.
Попробуйте повторить позже
Для положительных чисел и
докажите неравенство
Подсказка 1
Заметим, что если сложить все числители, то получится a + b + c + d. Как можно огрубить знаменатели, чтобы дроби сложились и все сократилось?
Увеличим каждый из знаменателей до это именно увеличения, ведь все числа положительны. Получаем, что левая часть
больше суммы дробей с одинаковым числителем, равной
Ошибка.
Попробуйте повторить позже
Даны положительные числа Докажите неравенство
Подсказка 1
Рассмотрим первую дробь. Если в числителе за скобки вынести b, то останется a + 1. А хотелось бы, чтобы осталось b + 1, и все сократилось. Можно ли как-то этого добиться?
Первый знак неравенства выполняется в силу неравенств и положительности чисел.
Ошибка.
Попробуйте повторить позже
Положительные числа не превосходят
Докажите неравенство
Подсказка 1
Попробуем применить метод огрубления. Для этого придется в начале упорядочить числа. Однако, если перебирать все случаи, то их будет целых 6. Можно ли как-нибудь упростить перебор?
Заметим, что неравенство достаточно доказать для двух случаев: и
остальные симметричны этим относительно
циклического сдвига переменных.
Итак в первом случае, хотим доказать, что
Заметим, что в правой части последнее слагаемое неположительно, а второе увеличивается при замене на
таким образом она не
более
полученное выражение меньше
Во втором случае в правой части неравенства
положительно лишь первое слагаемое, а оно меньше
Ошибка.
Попробуйте повторить позже
Докажите, что для любых чисел из отрезка
выполнено неравенство
Подсказка 1
Попробуем для начала сделать одинаковыми знаменатели. Какое условие можно для этого использовать?
Поскольку не меньше любой из переменных, заменив в каждом из знаменателей единицу на куб недостающей переменной, знаменатели не
увеличатся, а, значит, дроби не уменьшатся, тогда достаточно доказать следкющее:
По неравенству между средним арифметическим и геометрическим выходит
аналогично для каждой переменной, получаем необходимое.
Ошибка.
Попробуйте повторить позже
Положительные числа таковы, что
Докажите, что
Источники:
Подсказка 1
Нужно как-то прийти к корням, причем необычной степени…нам известна сумма всех чисел, а также сумма всех чисел, но с какими-то множителями… Попробуем выцепить из всех чисел группу каких-то больших, у которых указанная в условии сумма с корнями будет точно больше 1000.
Подсказка 2
Попробуем отделить от всех чисел такие, что a_m > 1/2^m. Что можно сказать про сумму этих чисел и про сумму этих чисел, но в произведении с корнями?(какие даны в условии)
Подсказка 3
Их сумма хотя бы 2022, а корни можно связать с 1/2)
Разобьем все эти числа на две группы. Число попадает в первую группу, если
А иначе попадает во вторую группу. Тогда
сумма чисел в первой группе меньше, чем
Тогда сумма чисел во второй группе будет хотя бы Пусть
находится во второй группе, тогда, так как все числа
положительны:
Значит,
Тогда все слагаемые из второй группы дают вклад в
Который составляет хотя бы половину от суммы всех чисел этой группы, то есть точно больше Следовательно, верно и
требуемое.
Ошибка.
Попробуйте повторить позже
Известно, что и
Докажите, что
Источники:
Подсказка 1
Если мы бегло посмотрим на условие, то сразу поймем, что приводить к общему знаменателю здесь это очень плохой вариант. В таких случаях бывает полезно оценить каждое слагаемое по отдельности. К тому же мы видим, что они достаточно похожи, возможно, придумав, как оценить одну дробь, мы сразу поймем, как оценить остальные.
Подсказка 2
Давайте внимательно посмотрим на первую дробь. Понятно, что с числителем тут ничего не сделаешь. А вот в знаменателе у нас есть тут целых два квадрата, стоит попытаться выделить полный квадрат. Подумайте, как нам может в этом помочь условие, что a+b+c=1.
Подсказка 3
Давайте в выражении 3a²+b²+2ac представим 3a² как a² + 2a², тогда можно будет вынести общий множитель из 2ac и 2a². Что можно подставить вместо a+c и как при этом будет выглядеть оценка на 3a²+b²+2ac?
Подсказка 4
Если вместо (a+c) подставить (1-b), то после выделения полного квадрата станет понятно, что 3a²+b²+2ac >= 2a. Используя это знание, оцените всю дробь целиком, остальные дроби суммы и саму сумму.
Так как то
Следовательно,
Аналогично
Сложив три полученных неравенства, получим
Ошибка.
Попробуйте повторить позже
Саша задумал 4 различных положительных числа. Докажите, что он может заменить звездочки в выражении на
задуманные числа (каждое число используется по одному разу) так, чтобы значение выражения не было положительным.
Источники:
Упорядочим задуманные Сашей числа: . Если
, то
и
, то есть
. Если же
, то
и
, то есть
.
Ошибка.
Попробуйте повторить позже
Докажите, что при любых положительных ,
и
верно неравенство
Заметим, что каждый из знаменателей меньше Теперь огрубим неравенство.