Тема Росатом

Многочлены и квадратные трёхчлены на Росатоме

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела росатом
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#83300

Найти коэффициент a
 49  многочлена P(x)= (1+x15+ x17)6  , если бы он был приведен в форму суммы одночленов вида    k
akx ,k = 0,2,3,...,102  .

Источники: Росатом - 2024, московский вариант, 11.5, по мотивам 10.2 ММО - 2005 (см. olymp.mephi.ru)

Подсказки к задаче

Подсказка 1

Обратим внимание на степени переменных. Понятно, что при раскрытии скобок для каждого одночлена степень будет вида 17n+15m. Тогда найдём натуральные решения для 17n+15m=49

Подсказка 2

Правильно, единственное решение - (2;1). То есть при перемножении скобок мы 2 раза взяли х¹⁷ и 1 раз х¹⁵. Обратим внимание также, что в заданной скобке перед каждым одночленом коэффициент 1. Как тогда мы можем выразить коэффициент перед х⁴⁹?

Подсказка 3

Конечно, коэффициент перед х⁴⁹ равен количеству способов выбрать комбинацию из двух х¹⁷ и одного х¹⁵ в 6 скобках. Остаётся только это досчитать

Показать ответ и решение

Понимаем, что при раскрытии скобок степень каждого одночлена будет иметь вид 17n +15m,  где n  — количество взятых x17,m  — количество взятых  15
x .  Поэтому решим сначала уравнение в натуральных числах

17n +15m = 49

Нетрудно заметить решение n= 2,m =1,  а также что это решение единственное, т.к. иначе, чтобы сохранить нужные остатки, x  будет изменяться на кратное 15 число, а y  на кратное 17, поэтому одно из них станет отрицательным.

Осталось лишь посчитать количество способов выбрать комбинацию из двух x17  и одного x15  в 6 скобках:

  2  1  6⋅5
C6 ⋅C 4 = 2 ⋅4= 60
Ответ: 60

Ошибка.
Попробуйте повторить позже

Задача 2#83310

На графике приведенного квадратного трехчлена с целыми коэффициентами отмечены две точки с целочисленными координатами. Найти расстояние между этими точками, если известно, что оно выражается целым числом, а дискриминант квадратного трёхчлена равен 9.

Источники: Росатом - 2024, региональный вариант, 11.5 (см. olymp.mephi.ru)

Подсказки к задаче

Подсказка 1

Формула подсчёта расстояния между двумя данными точками использует квадрат этого расстояния. Тогда что мы можем сказать про квадрат числа, если корень из него — целочисленное значение?

Подсказка 2

Выражение квадрата расстояния содержит сразу и абсциссы, и ординаты наших точек, это очень много переменных, вот бы оставить что-то одно из этого. Откуда же тогда можно получить y₁ - y₂ и x₁ - x₂ в одном выражении (где x₁, x₂, y₁, y₂ — абсциссы и ординаты данных точек соответственно)?

Подсказка 3

Тогда квадрат расстояния — это (x₁ - x₂)2(1 + k²), где k — некоторое выражение, записанное сейчас одной переменной для удобства. Имеется выражение «квадрат = 1 + квадрат», но много ли квадратов целых чисел отличаются на 1? Какой вывод можно сделать об абсциссах данных точек и о вершине параболы?

Подсказка 4

Осталось ещё одно условие в задаче, про дискриминант. Если изначальный квадратный трёхчлен равен y = x² + bx + с. В дискриминанте задействованы b и c, а в предыдущем найденном факте мы упоминали вершину, что их связывает? Конечно же b! А после можно будет сделать вывод на чётность x₁ - x₂.

Показать ответ и решение

Пусть (x ,y ),(x ,y )
  1 1   2 2  — эти точки, а y =x2 +bx+ c  — трёхчлен. Тогда справедливы равенства y = x2+ bx + c
 1   1   1  и y = x2 +bx + c
 2  2    2  . Если вычесть из первого второе, то получим y1− y2 =(x1− x2)(x1 +x2+ b)  , то есть y1− y2  делится на x1− x2  (для удобства запишем y1− y2 = k(x1− x2)  ).

Квадрат расстояния равен

       2        2         2    2
(y1− y2) + (x1− x2) =(x1− x2) (1 +k )

Поскольку множитель (x  − x )2
 1   2  — квадрат, то и 1+ k2  должен быть квадратом. Заметим, что квадраты целых чисел могут отличаться на 1  только если эти числа — 1  и 0  . Значит, k =0 =x + x + b
       1   2  , откуда y − y =0
 1  2  . То есть абсциссы выбранных точек симметричны относительно абсциссы вершины параболы.

Поскольку  2
b − 4c  равен 9, то b  нечётное. Таким образом, абсцисса вершины параболы является полуцелым числом (рациональная дробь со знаменателем 2  ), а значит, абсциссы x1  и x2  разной чётности, то есть расстояние — любое положительное нечётное число.

Ответ: Это может быть любое положительное нечётное число.

Ошибка.
Попробуйте повторить позже

Задача 3#79620

Многочлен P(x)  с целыми коэффициентами удовлетворяет условию P(17)= P(23)=2023  . Найти наименьшее возможное при этих условиях значение P(0)> 0  .

Источники: Росатом - 2023, региональный вариант, 11.1 (см. olymp.mephi.ru)

Подсказки к задаче

Подсказка 1

Давайте рассмотрим многочлен Q(x) такой, что Q(x) = P(x) – 2023. Следовательно, положительное число P(0) равно Q(0) + 2023. В виде произведения каких чисел можно представить Q(0)?

Подсказка 2

Q(17)=Q(23)=0, значит, числа 17 и 23 являются корнями многочлена Q(x), тогда по теореме Безу его можно разложить как (x-17)(x-23)R(x), где R(x) – многочлен с целыми коэффициентами. Мы знаем, что P(0) > 0, тогда что можно сказать про R(0)?

Подсказка 3

Подставим: P(0) = 17*23*R(0) + 2023. Значит, R(0) будет больше -2023/(17*23). Но R(x) – многочлен с целыми коэффициентами, значит, R(0) – это целое число. Какое минимальное значение может принимать R(0) и какое минимальное значение в таком случае будет иметь P(0)?

Показать ответ и решение

Пусть Q(x)= P(x)− 2023,  тогда Q(17)=Q (23)= 0,  следовательно, по теореме Безу,  Q(x)  делится на (x− 17)  и на (x− 23).  Таким образом, имеет место представление

Q(x)= (x− 17)(x− 23)R(x),

R(x)  — некоторый многочлен с целыми коэффициентами. Тогда

P(x)= (x− 17)(x− 23)R(x)+ 2023

P(0)=17⋅23R(0)+ 2023 =391m +2023, m ∈ℤ

Поскольку [2039231 ]= 5,  получаем P (0)min = 2023− 5⋅391 =68.  Например, это минимум реализуется при

P(x)=2023− 5(x− 17)(x− 23)

Замечание. На самом деле в качестве Q(x)  можно взять любой многочлен с целыми коэффициентами, такой что Q (0)= −5.

Ответ: 68

Ошибка.
Попробуйте повторить позже

Задача 4#48858

Петя написал в своей тетради многочлен P (x)  с целыми коэффициентами и предложил Васе угадать его степень. Вася задал Пете два вопроса: «Чему равно значение многочлена при x= −3  ?» и «Чему равен остаток от деления многочлена на (x− n)  , где n  – его степень?». Получив ответы 1  и 6  соответственно, Вася уверенно назвал степень многочлена. Как он это сделал? Какова степень многочлена?

Источники: Росатом-21, 11.1 (см. olymp.mephi.ru)

Подсказки к задаче

Подсказка 1

Из первого условия получаем, что P(-3) = 1. Но как можно использовать второе условие? Попробуйте записать его с помощью теоремы Безу и подставить в полученное уравнение такое значение x, чтобы P(x) был равен какому-то конкретному значению.

Подсказка 2

Отлично! Мы получили, что P(x) = (x-n)Q(x) + 6. А это значит, что P(n) = 6. Тогда мы знаем, что P(-3) = 1, а P(n) = 6. Попробуйте воспользоваться теоремой Безу для целочисленных многочленов.

Показать ответ и решение

Первое условие можно написать в виде P(−3)= 1  , для второго получим P(x)= (x − n)Q(x)+6  для некоторого многочлена Q  . Подставляя n  , имеем P(n)=6  . Воспользуемся теоремой Безу

P (n)− P(−3)= 6− 1 =5 кратно  n+ 3

Поскольку n≥ 0  , то n+ 3= 5  (иначе n  отрицательно), откуда n= 2.

Ответ:

 2

Ошибка.
Попробуйте повторить позже

Задача 5#68527

Многочлен P(x)  с целыми коэффициентами при x= 2  принимает значение 3  , а при x= 4  его значение равно 1  . Известно, что уравнение P (n)= n− 1  имеет целое решение. Найти это решение.

Источники: Росатом - 2021, 10.3 (olymp.mephi.ru)

Подсказки к задаче

Подсказка 1

Итак, по условию мы имеем, что P(2) = 3, P(4) = 1 и наш многочлен с целыми коэффициентами. А также при каком-то целом n получаем: P(n) = n-1. Тогда удобно применить теорему Безу для целочисленных многочленов. Что мы можем после этого сказать про n?

Подсказка 2

Отлично! Мы получили, что n-2 делится на n-4 и n-4 делится на n-2. Постойте, но когда такое возможно, что и x кратно y, и y кратно x?

Показать ответ и решение

Заметим, что P(n)− P(2)= n− 4  делится на n− 2  , что возможно только при n= 1,3,4  . При этом по аналогичным соображениям P (n)− P(4)= n − 2  делится на n − 4  . При n> 6  выполнены неравенства 0 <n − 4 <n − 2 <2⋅(n− 4)  , поэтому n≤ 6  . Далее несложным перебором получаем, что делимость возможна только при n =2,3,5  . Вспомнив первое условие, понимаем, что возможен только один вариант n= 3  .

Ответ:

 n =3

Ошибка.
Попробуйте повторить позже

Задача 6#80502

Петя написал на бумаге некоторый многочлен с неотрицательными целыми коэффициентами и думал, что Вася, задав только два вопроса Пете по телефону, никогда не сможет определить все коэффициенты многочлена. На первый Васин вопрос: «Чему равно значение многочлена при x= 3?  » Петя ответил «49». На второй Васин вопрос: «Чему равно значение многочлена при x= 49?  » был получен ответ «122455». Вася, немного подумав, назвал Пете все коэффициенты многочлена, который он написал. Какой многочлен придумал Петя?

Источники: Росатом - 2021, 11.1, комплект 2 (см. olymp.mephi.ru)

Подсказки к задаче

Подсказка 1

Так как у нас в задаче упоминается только слово многочлен, то нам для начала надо определить его степень. Заметим, что степень не больше трех, так как 49^4 >= 122455, но при этом третья степень еще меньше. Значит, многочлен имеет вид a_3 * x^3 + a_2 * x^2 + a_1 * x + a_0 = 0. К тому же, так как у нас конкретные значения многочлена в точках, то скорее всего, в какой-то момент нам надо будет рассматривать наше выражение по какому-то модулю. Удобно будет, если мы сможем оценить наши коэффициенты чем-то небольшим, что влезало бы в рассматриваемый модуль. Как можно оценить наши коэффициенты?

Подсказка 2

Во-первых, можно точно сказать, что 49 >= a_i(так как f(3) = 49). При этом, f(49) = 4 = x_0 (mod 49). А значит, a_0 = 4, так как a_0 <= 49. Подставьте a_0 в наши равенства и попробуйте также посмотреть на коэффициенты, которые получаются. При этом, так как a_0 != 0, то a_1, a_2, a_3 < 49. При этом, есть уравнение 49^2 * a_3 + 49 * a_2 + a_1 = 2499.

Подсказка 3

Но тогда выходит, что a_1 = 0, а тогда система линейных уравнений на a_2, a_3 решается единственным образом.

Показать ответ и решение

Пусть он задумал f(x)=∑  a xn
       n n  . Так как f(3)≥ 3na
       n  , то для n> 3  верно, что a  =0
 n  . Значит, f(x)= ax3+ a x2+a x+ a
       3    2    1    0  .

Заметим, что f(3) =49≥ ai  для любого i  . Так как f(49)=122455 ≡4 ≡a0 (mod 49).  Так как f(3)= 49≥ a0  , то a0 = 4  .

27a3+ 9a2 +3a1 = 45

9a3+ 3a2 +a1 = 15

Значит, a3,a2,a1 <49  .

493a3+492a2+49a1 = 124551

492a3+49a2+ a1 =2499

Значит,   ..
a1.49  и a1 = 0

49a3+a2 = 51

Значит, a2 ≡ 2 (mod 49)  и a2 =2  , а a3 =1  .

Ответ:

 x3+ 2x2+4

Рулетка
Вы можете получить скидку в рулетке!