Тема ТурГор (Турнир Городов)

Сложный вариант осеннего тура Турнира Городов

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела тургор (турнир городов)
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#98464

В прямоугольный треугольник с гипотенузой длины 1  вписали окружность. Через точки её касания с его катетами провели прямую. Отрезок какой длины может высекать на этой прямой окружность, описанная около исходного треугольника?

Показать ответ и решение

Пусть ABC  — треугольник с прямым углом B,O  — центр его описанной окружности, M  и N  — точки касания вписанной окружности с катетами AB  и BC  соответственно, X  и Y  — середины дуг AB  и BC  . Достаточно доказать, что точки M  и N  лежат на хорде XY  .

PIC

Пусть точка P  — проекция точки A  на биссектрису угла C  , точка Q  — проекция точки C  на биссектрису угла A  . По Задаче 255 точки P  и Q  лежат на прямой MN  . Так как 90∘ = ∠B = ∠APC = ∠AQC  , точки P  и Q  совпадают соответственно с X  и Y  .

Ответ:

 √2
 2

Ошибка.
Попробуйте повторить позже

Задача 2#73702

Геометрическая прогрессия состоит из 37  натуральных чисел. Первый и последний члены прогрессии взаимно просты. Докажите, что   19  -й член прогрессии является 18  -й степенью натурального числа.

Показать доказательство

Пусть наша прогрессия b ,b ,...b ,
 1 2    37  а знаменатель q.  Так как b ,b
 1 2  — натуральные числа, значит, q  — рациональное число, пусть    p
q = r,  где (p,r)= 1  и p,r ∈ℕ.  По условию первый и 37  члены взаимно просты. Значит              36       36-b1-
(b1,b37)= (b1,b1q )= (b1,p r36)= 1.  Так как b1  — натуральное, а (p,r)= 1,  то b1-
r36 ∈ℕ.  Если     36
b1 ⁄= q ,  то    36 b1
(b1,p r36)⁄= 1,  следовательно      36
b1 = r .  Теперь ясно, что        18    18
b19 = b1q = (pr)  — получили требуемое.

Ошибка.
Попробуйте повторить позже

Задача 3#75637

На сторонах BC  и CD  ромба ABCD  отмечены точки P  и Q  соответственно так, что BP = CQ.  Докажите, что точка пересечения медиан треугольника APQ  лежит на диагонали BD  ромба.

Источники: Турнир городов - 2010, осенний тур, сложный вариант, 9.4

Подсказки к задаче

Подсказка 1

Утверждение задачи очевидно в случае, если P совпадает с C или B. Каким способов можно обобщить данный факт, если знаем, что он верен в нужном количестве частных случаев?

Подсказка 2

Доказать задачу с помощью линейного движения. Достаточно показать, что точка пересечения медиан движется линейно при линейном движении точки P. Случаи для проверки, что прямая ее движения совпадает с BD мы уже нашли.

Подсказка 3

Понятно, что точки P и Q движутся линейно. Что в таком случае можно сказать, про середину их отрезка?

Подсказка 4

Она так же движется линейно. Как из этого следует линейность движения точки пересечения медиан?

Подсказка 5

Последняя лежит на отрезке, который соединяет данную середину с вершиной A, и делит его в фиксированном отношении 2 : 1, то есть так же движется линейно.

Показать доказательство

PIC

Первое решение. Пусть точки P  и Q  будут двигаться линейно из точки B  в точку C  и из точки C  в точку D  с равными скоростями. Тогда точка X  — середина отрезка PQ  также будет двигаться линейно. Значит, и точка Y,  делящая отрезок AX  в отношении 2  к 1,  будет двигаться линейно. Следовательно, точка пересечения медиан треугольника APQ  движется линейно по некоторой прямой ℓ.  Осталось показать, что ℓ= BD  Для этого достаточно найти два момента времени, когда точка пересечения медиан лежит на BD.  Например, подойдут положения P =B,Q = C  и P = C,Q= D.

______________________________________________________________________________________________________________________________________________________

Второе решение. Расположим наш ромб на комплексной плоскости так, чтобы его центр попал в начало отсчета, вершина B  — в точку i,  вершина D  — в точку − i  (этого можно добиться с помощью поворота, параллельного переноса и гомотетии). Тогда вершины A  и C  попадут на вещественную ось, причем a= −c.  Пусть BP-= λPC,  откуда p= i+-λc.
   1 +λ  Аналогично    c− λi
q = 1+-λ.  Координата точки пересения медиан треугольника AP Q  может быть вычислена по формуле a-+p+-q = i+-λc+-c− λi−-c− λc-= i⋅-1− λ .
   3           3(1 +λ)         3(1+ λ)  Последнее выражение является чисто мнимым, а значит, лежит на прямой BD.

Ошибка.
Попробуйте повторить позже

Задача 4#70196

Углы AOB  и COD  совмещаются поворотом так, что луч OA  совмещается с лучом OC,  а луч OB  — с OD.  В них вписаны окружности, пересекающиеся в точках E  и F.  Докажите, что углы AOE  и DOF  равны.

Подсказки к задаче

Подсказка 1

У нас на картинке есть две вписанные окружности. Было бы полезно отметить их центры O₁ и O₂. Верно ли, что теперь можно доказывать равенство уголков ∠O₁OF и ∠O₂OE?

Подсказка 2

Верно! Ведь ∠AOF и ∠DOE равны. Но тогда интересно будет посмотреть на биссектрису угла ∠O₁OO₂: обозначим за OK- биссектрису в треугольнике △O₁OO₂. Тогда ∠O₁OF=∠O₂OE ⇔ ∠FOK=∠FOE. А что можно сказать про отрезки EK и FK?

Подсказка 3

Они равны, ведь O₁O₂- серпер к EF. Если бы точки O, E, K и F лежали на одной окружности, то все было бы замечательно. Какую мы знаем окружность, которая проходит через O и K...

Подсказка 4

Окружность Аполлония для точек O₁ и O₂. Осталось только доказать, что EO₁ /EO₂=FO₁ /FO₂=OO₁ /OO₂. Первое равенство очевидно, ведь EO₁=FO₁=R₁ и EO₂=FO₂=R₂. Как доказать, что OO₁/OO₂=R₁/R₂?

Подсказка 5

Нужно всего лишь посмотреть на синусы углов ∠AOO₁ и ∠COO₂!

Показать доказательство

Первое решение.

Пусть O1,O2  — центры окружностей, r1,r2  — их радиусы. Проведём биссектрису угла AOD  (она же — биссектриса угла O1OO2).  Пусть она пересекает отрезок O1O2  в точке K.

PIC

Поскольку

KO1 :KO2 = OO1 :OO2 =r1 :r2 = EO1 :EO2 = FO1 :FO2,

то точки E,F,O,K  принадлежат одной и той же окружности Аполлония точек O1  и O2.  Поскольку O1O2  — серединный перпендикуляр к EF,  то равны хорды этой окружности EK  и F K.  Значит, равны и опирающиеся на них вписанные углы EOK  и FOK,  откуда немедленно следует равенство углов AOE  и DOF.

Второе решение.

Сделаем инверсию с центром в точке O  такую, что первая окружность переходит в равную второй. Вторая, соответственно, перейдёт в равную первой. Тогда, с одной стороны, лучи OF  и OE  перейдут в себя, с другой — мы имеем картинку, симметричную исходной относительно биссектрисы угла AOD,  а значит, она же биссектриса угла EOF,  откуда ∠AOE = ∠DOF.

Ошибка.
Попробуйте повторить позже

Задача 5#32437

Дан треугольник ABC.  В нём H  — точка пересечения высот, I  — центр вписанной окружности, O  — центр описанной окружности,    K  — точка касания вписанной окружности со стороной BC.  Известно, что отрезки IO  и BC  параллельны. Докажите, что отрезки AO  и HK  также параллельны.

Подсказки к задаче

Подсказка 1

Для начала, надо понять, что именно нам нужно доказывать, надо разбить нашу задачу на подзадачи, каждая из которых будет легче данной. Мы видим здесь ортоцентр и центр вписанной окружности. Из свойств ортоцентра, мы знаем, что расстояние от вершины до ортоцентра в два раза больше расстояния от центра описанной окружности до , противоположной этой вершине, стороны. Значит, стоит отметить середину BC и посмотреть, что это даст, учитывая условия задачи.

Подсказка 2

Верно, если середина - это M₁, то OMс=AH/2. А как нам использовать параллельность из условия? Высота из одной точки уже есть, а что такое высота из другой точки? Как это можно использовать?

Подсказка 3

Высота из другой точки - точки I - это точка касания вписанной окружности. Значит, IK₁=OM₁. Но при этом, мы знаем, что OM₁=AH/2, значит 2*IK₁=AH. Где можно на картинке найти удвоенный отрезок IK₁(радиус окружности)? Что это дает?

Подсказка 4

Удвоенный радиус вписанной окружности это, по сути, диаметр вписанной окружности. Значит, удобнее всего здесь отметить на этой окружности точку, диаметрально противоположную K₁ (искушенные читатели знают, что это совсем не простая точка).Пусть это точка D. Что тогда можно сказать про эту точку и точку А? В какой точке пересекает отрезок DA сторону BC? А если провести прямую, параллельную BC и проходящую через D?

Подсказка 5

Если провести такую прямую, то, во-первых, она будет касательной к вписанной окружности. Но при этом для треугольника, который отсекается этой параллельной прямой, эта окружность будет вневписанная. На построение какой окружности тогда намекает такое расположение?

Подсказка 6

Верно! На построение вневписанной окружности, которая касается BC. При этом, пусть AD пересекает BC в точке T₁. У нас есть вписанная и вневписанная окружности. Что принято рассматривать, когда есть две окружности, вписанные в один угол и имеющие две параллельные соответственные касательные?

Подсказка 7

Нужно рассмотреть гомотетию, с центром в точке А, переводящую вписанную окружность во вневписанную. Тогда, так как центр гомотетии, образ и точка лежат на 1 прямой, то выходит, что T₁-точка касания вневписанной окружности стороны BC, так как AD пересекает BC именно в этой точке. Значит, A,D,T₁ лежат на одной прямой! А что это дает? Как связаны точки касания вписанной и вневписанной окружности?

Подсказка 8

Да, CT₁=BK₁ (доказывается через обычный счет отрезков касания). Но при этом, М₁ — середина BC. То есть, от BC с концов отрезали равные отрезки (CT₁ и BK₁) и взяли середину. Значит, T₁M₁=M₁K₁. Так-так… А о чем задача? Ах да, нужно доказать, что AO и HK параллельны. Но при этом, на картинке у нас уже есть две параллельные прямые, которые отличны от тех, что в условии. Какие это прямые?

Подсказка 9

DK₁=AH, по доказанному. При этом, они параллельны. Значит, AHK₁D — параллелограмм. Значит, HK₁ || AD. Но нам же нужно доказать, что HK₁ || AO. Ого! Выходит, нам нужно доказать, что O лежит на прямой AD и задача решена? А равенство отрезков, доказанное ранее в пункте 8, может нам помочь?

Подсказка 10

Ну конечно, может! Только вот как бы это сделать? Хмм… А может быть, угадать эту точку на прямой AD? А вот если рассмотреть середину DT1…

Подсказка 11

Ничего себе! Если соединить середину DT₁ с другой серединой - М₁, то выходит, что этот отрезок будет перпендикулярен BC, при этом, будет равен половине DK₁, то есть, равен IK₁… Так это же отрезок M₁O ! Значит, O-середина DT₁, а значит, лежит на DT₁, а значит, и на AO !

Показать доказательство

Пусть M
  1  — середина стороны BC  , T
 1  — точка касания вневписанной окружности для треугольника ABC,  AT
  1  пересекается с M1O  в точке  ′
O.  Воспользуемся фактом, что на прямой AT1  лежит диаметрально противоположная точке K1  точка D.

PIC

Так как M1O ′ ∥K1D  из перпендикулярности BC  и хорошо известно, что K1M1 = M1T1,  то M1O ′ — средняя линия △T1K1D  и T1O′ = O′D.  При этом K1I = ID= r,  откуда O′I  — также средняя линия △T1DK1  и параллельна BC,  откуда из условия задачи следует, что O′ = O.

В итоге имеем O ∈AT1.  В силу перпендикулярности BC  мы знаем, что AH ∥DK1.  Кроме того, по свойству ортоцентра AH = 2OM1 = 2IK1 = 2r,  тогда AH = DK1.  Так что AHK1D  — параллелограмм, поэтому AO ∥HK1.

Замечание.

Равенство AH  =2OM1  можно проверить чисто технически: пусть CHC  — высота ABC,  тогда AH = AC⋅sinACHC-= AC-⋅cos∠BAC = 2Rcos∠BAC.
      cosHCAH       sin∠B  При этом OM1 = OB ⋅cos∠BOM1 = R ⋅cos∠BOC-= R⋅cos∠BAC  = AH∕2.
                           2

Ошибка.
Попробуйте повторить позже

Задача 6#81315

Имеется несколько юношей, каждый из которых знаком с некоторыми девушками. Две свахи знают, кто с кем знаком. Одна сваха заявляет: “Я могу одновременно поженить всех брюнетов так, чтобы каждый из них женился на знакомой ему девушке!” Вторая сваха говорит: “А я могу устроить судьбу всех блондинок: каждая выйдет замуж за знакомого юношу!” Этот диалог услышал любитель математики, который сказал: “В таком случае можно сделать и то, и другое!” Прав ли он?

Источники: Турнир городов - 2003, осенний тур, сложный вариант, 11.1

Показать ответ и решение

Пусть каждый брюнет возьмёт правой рукой левую руку девушки, предназначенной ему первой свахой, а каждая блондинка возьмёт правой рукой левую руку юноши, предназначенного ей второй свахой. При этом образуются хороводы (циклы) и цепочки, которые содержат всех брюнетов, всех блондинок и, возможно, кого-то еще. Цепочки из чётного числа людей и хороводы (там чётное число людей ввиду чередования) разбиваются на пары знакомых, и их можно поженить.

Пусть цепочка состоит из нечётного числа людей и юношей в ней больше, чем девушек. Тогда на её концах стоят юноши и у одного из них свободна правая рука. Значит, он не брюнет, и его можно удалить из цепочки, а оставшихся переженить. Аналогично поступим с цепочкой, в которой больше девушек.

Ответ:

Прав

Ошибка.
Попробуйте повторить позже

Задача 7#40097

Последовательность определяется так: первые её члены равны 1,2,3,4,5.  Далее каждый следующий (начиная с 6  -го) равен произведению всех предыдущих членов минус 1.  Докажите, что сумма квадратов первых 70  членов последовательности равна их произведению.

Источники: Турнир городов - 1996, осенний тур, сложный вариант, 9.2

Подсказки к задаче

Подсказка 1!

В этой задаче нам потребуется один трюк. Чтобы доказать это, введем новую последовательность - такую, что ее n-ый член это разность a1a2a3...an и a1^2+a2^2...+an^2. И докажем, что 70ый член данной последовательности равен 0!

Подсказка 2!

Как бы это доказать? Вы знаете начальные члены последовательности, значит, надо как-то выразить n+1ый через nый, чтобы посчитать 70ый!

Показать доказательство

Пусть первоначальная последовательность была x ,n∈ ℕ.
 n  Введём новую последовательность y = x ⋅...x − (x2+ ...+ x2),
 n   1    n   1       n  посчитаем разность yn− yn+1  для n ≥5 :

                    2       2    2      2   2
yn− yn+1 = x1 ⋅...xn − (x1+ ...+ xn)+ (x1+...+xn +xn+1)− x1⋅...xn ⋅xn+1 =

           2
= xn+1+ 1+ xn+1 − (xn+1+1)xn+1 = 1

Тогда y   = yn− 1.
 n+1  Поскольку y = 5!− (12+ 22+ 32+ 42 +52)= 120− 55= 65,
 5  то y = y − 65=0,
70   5  что и требовалось.

Ошибка.
Попробуйте повторить позже

Задача 8#98989

Выпуклый n  -угольник триангулирован. Разрешается проделывать следующее преобразование flip: взяв пару треугольников ABD  и BCD  с общей стороной, заменить их на треугольники ABC  и ACD.

(a) Докажите, что при помощи flip-ов из любой триангуляции можно получить любую другую.

(b) Пусть f(n)  — наименьшее число flip-ов, за которое можно перевести каждое разбиение в любое другое. Докажите, что f(n)≥ n− 3.

(c) Докажите, что f(n)≤ 2n− 7.

Подсказки к задаче

Подсказка 1, пункт а

Давайте докажем утверждение индукцией по n. Какую именно вершину многоугольника можно исключить из рассмотрения?

Подсказка 2, пункт а

Конечно, ту вершину, из которой не выходит диагоналей. Если бы у двух, интересующих нас триангуляций, такая вершина совпала, задача была бы уже решена.

Подсказка, пункт б

Мы хотим придумать две расстановки диагоналей, которые нельзя быстро друг в друга перевести. n-3 в точности равняется числу диагоналей, как это использовать?

Показать доказательство

(a) Проведем доказательство индукцией по n.  База для n =3  тривиальна. Пусть в n− угольнике с помощью flip-ов можно получить все триангуляции. Докажем это утверждение для (n+1)− угольника. Пусть M = A1A2...An+1  — наш (n+ 1)− угольник. Заметим, что проведена хотя бы одна диагональ AkA(k+2).  Иначе, если ни одной такой диагонали не проведено, то найдется диагональ AkAk+j,  где j ≥ 3.  Рассмотрим диагональ между вершинами AkAk+j  с минимальным j.  Тогда между вершинами Ak+1,Ak+2,...,Ak+j−1  не проведено ни одной диагонали. Так как j ≥3,  то получаем, что наше разбиение многоугольника диагоналями не является триангуляцией — противоречие. Итак, хотя бы одна диагональ проведена между вершинами AkAk+2  для некоторого k.  Она отсекает от нашего многоугольника треугольник AkAk+1Ak+2.  Весь многоугольник без этого треугольника обозначим M ′ (он получается удалением вершины Ak+1  из M  и ребер, соединенных с ней). Тогда M′ — выпуклый n− угольник. Любое его разбиение может быть получено flip-ами треугольников в его триангуляции. Вернемся к многоугольнику M.  С помощью нескольких flip-ов можно вместо диагонали AkAk+2  получить любую диагональ AsAs+2.  Если такая диагональ получена, то рассуждения о получении триангуляций с этой диагональю аналогичны рассуждениям с диагональю AkAk+1.  Таким образом, любая триангуляция получится, поскольку любая триангуляция содержит диагональ между некоторыми вершинами As  и As+2.

(b) Рассмотрим соседние вершины A  и B.  Обозначим через P1  разбиение, в котором все n − 3  диагонали выходят из вершины A,  а через P2  — разбиение, в котором все диагонали выходят из B.  Заметим, что в P2  ни одна диагональ не выходит из A.  Поскольку за одну перестройку добавляется не более одной диагонали, выходящей из A,  то для преобразования P
 2  в P
 1  требуется не менее n− 3  перестроек.

(c) Предположим, что мы хотим преобразовать P3  в P4,  где P3  и P4  — два произвольных разбиения. Пусть A  — вершшна, из которой выходит хотя бы одна диагональ P4,  P1  — перестройка, определенная в (b). Покажем, что можно преобразовать P3  в P1,  добавляя при каждой перестройке по одной диагонали, выходящей из A.  Пусть диагональ AC  ещё не проведена. Тогда её начало принадлежит одному из треугольников ADE  разбиения, причем DE  — диагональ. Поэтому к ней с другой стороны прилегает некий треугольник DEF  разбиения (F  может совпадать с B ).  Сделав flip четырёхугольника ADF E,  мы добавим диагональ AF.  Итак, для указанного преобразования нужно не более n − 3  перестроек. Для преобразования P1  в P4  необходимо столько же flip-oв, сколько для обратного преобразования P4  в P1,  то есть не более n − 4,  поскольку одна диагональ уже стоит на своём месте.

Рулетка
Вы можете получить скидку в рулетке!