Планиметрия на устном туре Турнира Городов
Ошибка.
Попробуйте повторить позже
Точки лежат внутри окружности
. Серединный перпендикуляр к отрезку
пересекает
в точках
и
. Окружность с
центром
, проходящая через
и
, пересекает
в точках
и
. Отрезок
лежит внутри треугольника
. Докажите,
что
.
Источники:
Первое решение.
Пусть — точка пересечения отрезка
и дуги
. Так как
, то
— биссектриса угла
и по теореме о
трилистнике
— центр вписанной в треугольник
окружности. Следовательно,
— биссектриса угла
. С другой стороны,
так как
серединный перпендикуляр к
, то
, то есть
— биссектриса угла
. Из этих двух утверждений следует
утверждение задачи.
_________________________________________________________________________________________________________________________________________________________________________________
Второе решение.
Обозначим . Необходимо доказать, что
.
Заметим, что
Далее, , как центральный и вписанный в окружность (
), а также
,
как центральный и вписанный в окружность (
). Тогда
______________________________________________________________________________________________________________________________________________________
Замечание.
В условии задачи дано, что точки и
лежат не только внутри окружности
, но и внутри вписанного в неё треугольника
.
Последнее условие на самом деле излишне. Из остальных условий задачи следует, что точки
и
изогонально сопряжены относительно
треугольника
. Но если обе изогональные точки лежат внутри описанной окружности, то они лежат и внутри треугольника, поскольку
при изогональном сопряжении три сегмента, ограниченные сторонами треугольника и дугами описанной окружности, переходят в три угла,
вертикальных углам треугольника
Ошибка.
Попробуйте повторить позже
Дан треугольник Пусть
— центр его вписанной окружности,
— такая точка на стороне
что угол
прямой,
— точка, симметричная точке
относительно вершины
Докажите, что точки
лежат на одной
окружности.
Источники:
Пусть пересекает
в точке
Угол
тупой, а угол
острый, значит
лежит между
и
Далее, т.к.
— центр
вписанной окружности треугольника, получаем
Значит, треугольники и
подобны. Учитывая это и равенство
имеем
Кроме того,
Следовательно,
Тогда треугольники и
подобны по углу и отношению прилежащих сторон, значит
и точки
лежат на одной окружности.
Замечание. После доказательства подобия треугольников и
можно действовать по-другому. Выберем
точку
на продолжении отрезка
за точку
так, что
тогда треугольники
и
равны
(
). Значит,
— равнобокая трапеция, и она вписана. С другой стороны, поскольку
точки
лежат на одной окружности. Значит, все пять точек
лежат на окружности
Ошибка.
Попробуйте повторить позже
Дан неравнобедренный треугольник Выберем произвольную окружность
касающуюся описанной окружности
треугольника
внутренним образом в точке
и не пересекающую прямую
Отметим на
точки
и
так,
чтобы прямые
и
касались
а отрезки
и
пересекались внутри треугольника
Докажите,
что все полученные таким образом прямые
проходят через одну фиксированную точку, не зависящую от выбора
окружности
Пусть — точка пересечения касательных
и
Докажем, что все прямые
проходят через точку
— основание внешней
биссектрисы угла
треугольника
(точка
существует, так как треугольник неравнобедренный).
По теореме, обратной к теореме Менелая, для треугольника достаточно проверить, что
Поскольку и
равны как касательные, достаточно проверить равенство
Но по свойству внешней биссектрисы
Так что проверяем равенство
Пусть и
пересекают окружность
в точках
и
соответственно. Запишем степени точек
и
относительно
окружности
Осталось проверить равенство
Это равенство следует из того, что касается описанной окружности треугольника
в точке
Ошибка.
Попробуйте повторить позже
Назовём расположенный в пространстве треугольник удобным, если для любой точки
вне его плоскости из отрезков
и
можно сложить треугольник. Какие углы может иметь удобный треугольник?
Докажем сначала, что неравносторонний треугольник под условие подходить не может. Предположим противное, пусть такой треугольник
есть и в нём
причём длины этих сторон различаются хотя бы на
Рассмотрим точку расположенную на перпендикуляре к плоскости
проходящем через точку
на расстоянии
от
Тогда
Можно выбрать настолько близко к вершине
уменьшая
чтобы
и
отличались соответственно от
и
меньше, чем на
и чтобы
было меньше
Тогда стороны
и
будут различаться более чем на
а длина стороны
меньше
— противоречие с неравенством треугольника.
Покажем теперь, что равносторонний треугольник удобен. Пусть Отметим на лучах
точки
так, чтобы выполнялись равенства:
Треугольники и
подобны по углу и отношению двух сторон, откуда
Аналогично вычисляем длины остальных сторон. Получаем, что треугольник — искомый.
Ошибка.
Попробуйте повторить позже
Точка — центр вписанной окружности треугольника
, а
— точка касания этой окружности со стороной
.
Пусть
и
— ортоцентры треугольников
и
соответственно. Докажите, что точки
лежат на одной
прямой.
Первое решение.
Случай очевиден. Иначе основания
и
высот
и
лежат на биссектрисе
по разные стороны от
,
прямые
и
параллельны и
. Задача будет решена, если мы докажем подобие треугольников
и
(тогда равные углы
и
вертикальны и точки
лежат на одной прямой). Для этого достаточно проверить,
что
.
Пусть и
— точки касания окружности со сторонами
и
соответственно. Тогда
, и осталось доказать
равенство
. Оно следует из подобия треугольников
и
: они прямоугольные, а поскольку
— биссектриса
угла
, углы
и
равны.
Второе решение.
Так как содержит высоту треугольника
, то
. Пусть
— точка касания
со вписанной окружностью, так что
. Тогда
Аналогично , откуда
. И также
, откуда
. Таким образом,
.
Значит,
, откуда и следует, что
на одной прямой.
Ошибка.
Попробуйте повторить позже
В остроугольном треугольнике на высоте
выбрана произвольная точка
Точки
и
– середины сторон
и
соответственно. Перпендикуляр, опущенный из
на
пересекается с перпендикуляром, опущенным из
на
в точке
Докажите, что точка
равноудалена от точек
и
Обозначим через и
основания перпендикуляров, опущенных из
и
Достаточно показать, что
тогда по теореме Карно для треугольника
точка
будет лежать на серединном перпендикуляре к
что равносильно
требуемому. Выразим квадраты из равенства с помощью теоремы Пифагора для треугольников
и
:
Приведём подобные:
Домножим равенство на запишем
как
как
а квадраты
и
распишем с помощью формулы
медианы для треугольников
и
Приведём подобные и поделим на
Это равенство верно, поскольку
получили требуемое.