Тема Сферы

Описанная сфера

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела сферы
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#96229

В правильной треугольной пирамиде SABC  с вершиной S  и основанием ABC  дана высота h  и AB = a.  Найти радиус сферы, описанной около пирамиды.

Показать ответ и решение

Пусть точка H  — основание высоты пирамиды, точка O  — центр описанной окружности сферы, r  — радиус этой сферы. Тогда SO = OA =OC = OB = r.  По свойству правильной пирамиды точка O  лежит на прямой SH,  являющейся высотой.

Рассмотрим треугольник OHB.  Он прямоугольный, так как OH  перпендикулярна плоскости ABC,  то есть перпендикулярна и прямой HB,  лежащей в ABC.  OB = r,       a--
HB = √3  как радиус окружности, описанной около правильного треугольника со стороной    a.  Рассмотрим, чему может быть равна длина отрезка OH  в зависимости от положения точки O  относительно точек S  и H :

1.

Пусть O  лежит на отрезке SH.  Тогда OH = h− r

PIC

2.

Пусть O  лежит за точкой H,  то есть точки S  и O  находятся по разные стороны от точки H.  Тогда OH = r− h

PIC

3.

Пусть O  лежит за точкой S,  то есть точки H  и O  находятся по разные стороны от точки S.  Но тогда OH = h+ r,  и в прямоугольном треугольнике OHB  катет OH = h+ r  больше чем гипотенуза OB = r,  что не возможно, то есть O  не может лежать за S.

PIC

Получается, что OH = |h− r|.  По теореме Пифагора:

   2    2     2
OB  = OH  +HB

           (   )2
r2 = (r− h)2+ a√--
              3

    2  a2
r= h-+-3-
     2h
Ответ:

 h + a2
 2  6h

Ошибка.
Попробуйте повторить позже

Задача 2#98911

Основанием пирамиды служит треугольник со сторонами 6,  8,  10.  Все боковые рёбра равны 5√2.  Найдите радиус сферы, описанной около пирамиды.

Показать ответ и решение

Пусть ABC  — треугольник, который служит основанием пирамиды, при этом AB =6,BC = 10,CA = 8.  Заметим, что 102 =82+ 62,  то есть   2     2    2
BC  =AB  + CA ,  откуда ABC  — прямоугольный треугольник с гипотенузой BC.

Все рёбра пирамиды равны, а значит, точки A,B  и C  равноудалены от четвёртой вершины пирамиды. Геометрическое место точек, равноудалённых от A,B  и C  — прямая, перпендикулярная плоскости ABC  и проходящая через центр окружности, описанной около ABC.

PIC

Так как треугольник ABC  — прямоугольный, то центр его описанной окружности лежит на середине его гипотенузы. Пусть точка   O  — середина BC,  тогда вершина пирамиды D  лежит на прямой, перпендикулярной плоскости ABC  и проходящей через точку O,  а так же

OC = OB =OA = 1BC = 5
              2

Треугольник DOC  — прямоугольный, так как прямая DO  перпендикулярна плоскости ABC,  то есть перпендикулярна и прямой   OC,  лежащей в ABC.  DC =5√2  как ребро пирамиды, OC = 5,  отсюда DO = 5.

Получается, OC = OB = OA =OD = 5,  то есть точка O  равноудалена от всех вершин пирамиды, откуда точка O  — центр описанной сферы. Значит, радиус описанной сферы равен 5.

Ответ:

5

Ошибка.
Попробуйте повторить позже

Задача 3#72981

Основание H  высоты SH  треугольной пирамиды SABC  принадлежит грани ABC,

    ∘ -5-
SH =  21,SA =1,SB =2,∠ASB = 120∘,∠ACB = 60∘

Найти радиус сферы, описанной около пирамиды SABC.

Подсказки к задаче

Подсказка 1

Давайте обозначим центр нашей сферы за O. Разумно будет опустить перпендикуляры OO₁ и OO₂ на плоскости (ABC) и (ASB) соответственно. Что тогда можно сказать про точки O₁ и O₂?

Подсказка 2

Правильно, это центры описанных окружностей треугольников △ABC и △ASB. Т.к. ∠AO₁B- центральный, то ∠AO₁B=2∠ACB=120°. Заметим, что △ASB- тупоугольный, а это значит, что O₂ лежит вне треугольника △ASB ⇒ ∠AO₂B=120°. Тогда равнобедренные треугольники △AO₂B и△ AO₁B равны. А что можно сказать про треугольники △OO₂M и △OO₁M, где M- середина AB?

Подсказка 3

Они равны! Т.к. OM, O₁M, O₂M ⊥ AB ⇒ O, O₁, O₂, M лежат в одной плоскости. Вот если бы мы знали уголок ∠O₂MO₁, мы бы легко нашли OO₁... Погодите, ведь ∠O₂MO₁ это просто больший из линейных углов двугранного угла между плоскостями (ABC) и (ASB)...

Подсказка 4

Итак, раз уж вы нашли этот уголок, то ∠OMO₁=∠O₂MO₁/2 ⇒ можем вычислить OO₁. Осталось лишь написать теорему Пифагора для треугольника △OBO₁ и найти OB=R!

Показать ответ и решение

PIC

По теореме косинусов из треугольника △ASB  находим, что

                               ∘ ----------------
AB = ∘SA2-+SB2-−-2SA-⋅SBcos120∘ =  1+ 4− 2 ⋅1 ⋅2 ⋅(− 1 )=√7.
                                              2

Пусть SD  - высота треугольника △ASB  . Тогда

       1         √7-
S△ASB = 2AB ⋅SD = 2 ⋅SD.

С другой стороны,

                             √ -  √-
S△ASB = 12AS ⋅BS sin120∘ = 12 ⋅1⋅2⋅-23=-32 .

Из уравнения √ -     √ -
-27⋅SD =-23  находим, что      ∘ --
SD =   37.  По теореме о трёх перпендикулярах HD ⊥ AB,  поэтому SDH  - линейный угол двугранного угла между плоскостями граней ASB  и ABC.  Обозначим ∠SDH = β.  Из прямоугольного треугольника △SDH  находим, что

          ∘ -5  √ -
sinβ = SH-=-∘21 =--5.
     SD      37   3

Тогда cosβ = 23.

PIC

Пусть O1  и O2  - проекции центра O  сферы, описанной около пирамиды ABCD  на плоскости граней ABC  и ASD  соответственно. Тогда O1  и O2  - центры описанных окружностей треугольников △ABC  и △ASB.  Тогда, если M  - середина ребра AB,  то O1M ⊥ AB  и O2M ⊥ AB.
Поскольку ∠ASB = 120∘ > 90∘,  центр O
 2  описанной окружности треугольника △ASB  и вершина S  лежат по разные стороны от прямой AB,  значит, центр O  сферы лежит внутри тупого двугранного угла, образованного плоскостями граней ASB  и ABC.
Рассмотрим сечение пирамиды плоскостью, проходящей через прямые O1O  и O2O.  Прямая AB  перпендикулярна этой плоскости, т.к. она перпендикулярна O2M ⊥ AB,  то точка M  также принадлежит этой плоскости. Заметим, что

                  ∘           ∘            ∘    ∘     ∘
∠AO1B = 2∠ACB = 120 ,∠AO2B = 360 − 2∠ASB =360 − 240 = 120,

поскольку центральный угол вдвое больше соответствующего вписанного. Из равнобедренных треугольников △AO1B  и △AO2B  находим, что

                   ∘  √7   1   √7-              ∘7-
O1M = O2M = AM cot60 = -2-⋅√3-= 2√3, BO1 = 2O1M = 3.

Прямоугольные треугольники △OMO1  и △OMO2  равны по гипотенузе и катету, поэтому ∠MOO1 = ∠MOO2,  а т.к. ∠O1OO2 = β,  то ∠MOO1  = β2.  Тогда

                √-  ∘ -------  √-  ┌││ ---2- √ --
OO1 =O1M cotβ = √7-⋅  1+-cosβ-= √7-⋅∘ 1+-32 =-√35.
            2   2 3   1− cosβ   2 3   1− 3  2  3

Пусть R  искомый радиус описанной сферы пирамиды ABCD.  Из прямоугольного треугольника △OO1B  находим, что

                    ┌│ (-√--)2--(∘--)2- √ --
R= OB = ∘OO2-+-BO2-=│∘   √35  +    7   =--21.
            1    1      2 3       3      2
Ответ:

 √21
  2

Ошибка.
Попробуйте повторить позже

Задача 4#99232

Десять шаров одинакового радиуса сложены в виде треугольной пирамиды так, что каждый шар касается как минимум трёх других. Найти радиус сферы, в которую вписана пирамида из шаров, если радиус шара, вписанного в центр пирамиды из шаров, касающегося шести одинаковых шаров, равен √-
 6− 1.

Источники: Газпром - 2023, 11.6 (см. olympiad.gazprom.ru)

Показать ответ и решение

При таком расположении десяти одинаковых шаров центры A,B,C,D  четырёх из них расположены в вершинах правильного тетраэдра, а точки касания расположены на ребрах этого тетраэдра. Следовательно, ребро тетраэдра равно четырём радиусам этих шаров, радиус внешней сферы больше радиуса шара, описанного около тетраэдра на четверть длины ребра тетраэдра, а радиус внутреннего шара меньше расстояния от центра тетраэдра до его грани на эту же величину. Рассмотрим сечение тетраэдра плоскостью ABM  :

Обозначим длину ребра тетраэдра за a  , радиус сферы, описанной вокруг пирамиды из шаров за R  , радиус шара, вписанного в центр пирамиды из шаров за r  .

В треугольнике ABM :

            √-                    √ -                   √-
AM  =BM  = a-3, ME  =MH  = 1AM = a--3, AH = BE = 2AM = a-3,
            2              3      6              3      3

следовательно,

                            √ -
AE =BH  =∘AM2--−-ME2-= 2√a-= a-6.
                        6    3

Из подобия треугольников AEM  и AHO  имеем

AO   AH    a√3  √2            √2-     a√6
AM- =-AE = a√6 =-2-и AO =BO = -2-AM = -4--

В треугольнике ABO  :

SABO = AH-⋅BO-= AB-⋅FO,
          2        2

следовательно,

                √--   √-
FO = AH-⋅BO-= a2-18= a-2.
       AB      12a    4

Тогда

             a√6  a   a(√6 +1)
R =AO + AL = -4-+ 4 = ---4----
             a√2   a   a(√2 − 1)
r= FO − FK = -4-− 4 = ---4----

Таким образом,

    √ -       -      -
R-= (√-6+-1)-=(√6 +1)(√ 2+1),
r   ( 2− 1)

откуда

R = (√6-+ 1)(√2+ 1)r= 5(√2+ 1).
Ответ:

 5(√2+ 1)

Ошибка.
Попробуйте повторить позже

Задача 5#63890

Дана правильная треугольная пирамида. Известно, что центр сферы, описанной около этой пирамиды, равноудалён от боковых рёбер и от плоскости основания пирамиды. Найдите радиус сферы, вписанной в эту пирамиду, если длина ребра её основания равна 12.

Подсказки к задаче

Подсказка 1

Назовём нашу пирамиду SABC, где △ABC будет основанием. Попытаемся узнать длину бокового ребра, пользуясь данными о том, что центр описанной около этой пирамиды сферы равноудалён от боковых рёбер и плоскости основания. Где относительно высоты пирамиды будет расположен центр описанной сферы? Пусть Н — основание высоты, а О₁ — центр описанной сферы. Что можно сказать про △ASH, пользуясь тем, что точка О равноудалена от точки Н и прямой AS, а также от точек S и A?

Подсказка 2

Пирамида правильная, значит мы точно знаем положение точки Н, длину АН и отсюда сможем вытащить AS. Теперь мы знаем длины всех рёбер пирамиды! Подумайте, как можно вытащить радиус вписанной сферы?

Подсказка 3

Центр вписанной сферы О₂ также лежит на высоте пирамиды. Нетрудно доказать, что если М — середина АВ, то именно в плоскости (MSH) будут лежать радиусы, проведённые в точки касания сферы с гранями АВС и SAB. Рассмотрите △MSH, как мы можем в нём посчитать O₂H?

Подсказка 4

MH нетрудно ищется из свойств правильного треугольника. Пифагор поможет нам найти SM и SH. О₂, как точка равноудалённая от сторон МН и MS лежит на биссектрисе угла M. Осталось только применить свойство биссектрисы и задача решена!

Показать ответ и решение

Пусть ABC  — основание пирамиды, S  — вершина, H  — центр треугольника ABC,  M  — середина AB,O
     1  — центр описанной сферы, O2  — центр вписанной сферы. Поскольку точка O1  равноудалена от AS  и ABC,AO1  — биссектриса треугольника ASH.  Стало быть,                          ∘
∠HAO1 = ∠SAO1 = ∠ASO1 =30 .

PIC

Поскольку AB = 12,  имеем       √-
AH = 4 3,  откуда O1H =4,  O1A = O1S = 8.  Для треугольника MSH  имеем              √-
SH =12,MH = 2 3,  откуда       √--
SM = 2 39.  Поскольку MO2  — биссектриса,                       √--
SO2 = HO2 ⋅SM∕MH =HO2  13.  Стало быть,        √ --
HO2 (1 +  13)=  SH = 12,  откуда       √--
HO2 =  13− 1.

Ответ:

 √13-− 1

Ошибка.
Попробуйте повторить позже

Задача 6#98163

В сферу радиуса 3  вписана правильная треугольная призма ABCA B C
     1 1 1  с основанием ABC  и боковыми ребрами AA  ,BB  ,CC  .
   1   1   1  Отрезок CD  — диаметр этой сферы. Найти объем призмы, если       √-
AD = 2 6.

Источники: Газпром - 2022, 11.6 (см. olympiad.gazprom.ru)

Подсказки к задаче

Подсказка 1

Нам нужно понять, от чего зависит конструкция, то есть какими параметрами задаётся. С учетом того, что нам надо найти объём, то есть найти площадь основания на высоту, какие параметры нам удобно ввести, чтобы через них всё выражалось?

Подсказка 2

Удобно ввести высоту и радиус окружностей, в которые вписано каждое из оснований. Тогда, поскольку в силу симметрии CD — диаметр, то нам известна длина CD, а также известна длина AD. Это значит, что у нас есть два уравнения на две переменных (r и h), поскольку есть два прямоугольных треугольника у которого стороны либо константы, либо выражаются через r и h. Осталось решить такую систему и посчитать объём!

Показать ответ и решение

Плоскости оснований ABC  и A B C
  1 1 1  призмы пересекают сферу по окружностям, описанным около правильных треугольников ABC  и A1B1C1;  пусть их центры — точки O  и O1  соответственно.

Легко показать, что середина M  отрезка OO1  является центром сферы.

PIC

Проведем через точку C1  диаметр C1D  окружности с центром в точке O1.  Покажем, что CD  — диаметр сферы. Действительно, плоскость CC1D  перпендикулярна плоскостям основания и, значит, вместе с точкой O1  содержит отрезок OO1.  Т.к. C1D = 2DO1,  прямая CD  пересекает отрезок OO1  в его середине, т.е. в центре M  заданной сферы.

Пусть D1  — проекция точки D  на плоскость основания ABC,  высота призмы равна h,  а радиусы окружностей с центрами O  и    O1  равны r.  Рассмотрим треугольники CC1D  и ADD1.  Учитывая, что C1D = 2r,AD1 =r  (треугольник AOD1  равносторонний), CC1 = DD1 =h,  по т. Пифагора получаем систему уравнений:

{
  h2+4r2 = 62√
  h2+r2 =(2 6)2

Решая систему, находим, что         √-
r= 2,h =2 5.  Тогда сторона основания равна  √ -
2  3,  его площадь     √ -
S =3  3,  и следовательно, объем призмы           √--
V = S⋅h =6 15.

Ответ:

 6√15

Ошибка.
Попробуйте повторить позже

Задача 7#63815

Дан тетраэдр ABCD  . Известно, что центр сферы, описанной около этого тетраэдра, лежит на AB  , что плоскости ABC  и ABD  перпендикулярны и что AD =DC = CB  . Найдите угол между прямыми AD  и CB.

Источники: ДВИ - 2021, вариант 214, задача 7 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

Пусть К — центр описанной сферы. Отметьте равные отрезки-радиусы сферы. Какой вывод можно сделать, смотря на △ADB и его медиану, равную половине стороны? Какой вывод можно сделать о △АВС?

Подсказка 2

Итак, перед нами два прямоугольных треугольника с общей гипотенузой и равными катетами, значит они сами...? Проведите высоту DH в △ADB, что можно сказать об отрезке СН, пользуясь перпендикулярностью плоскостей?

Подсказка 3

Из равенства треугольников можно вывести, что ВН = АН, то есть Н совпадает с К, значит △ADB и △AСB не только прямоугольные, но и...?

Подсказка 4

Отметьте L и M — середины рёбер BD и CD соответственно. Что можно сказать о связи LM и BC? А о LK и AD? Осталось внимательно рассмотреть △MLK и записать ответ!

Показать ответ и решение

Сразу отметим, что, поскольку центр сферы, описанной около тетраэдра, лежит на AB  , углы ACB  и ADB  - прямые. Далее, опустим перпендикуляры CK  и CL  на AB  и BD  соответственно. Тогда DL = LB  , ибо DC = CB  , следовательно, KL − серединный перпендикуляр к BD  в плоскости ABD  и, поскольку          ∘
∠ADB  = 90 , точка K  является серединой AB  . Значит, AC =BC  . Аналогично, AD = BD.

Итак, AC = BC = AD =BD  =CD, AB ⊥CK, AB ⊥DK, AK = BK = CK =DK  . Пусть E − точка, симметричная точке C  относительно K  . Тогда AK ⊥ EK ⊥ DK  и AK = EK =DK  . Следовательно, треугольник ADE − равносторонний. При этом AE ∥CB  . Стало быть, искомый угол равен углу EAD  и равен  ∘
60.

Ответ:

 60∘

Ошибка.
Попробуйте повторить позже

Задача 8#63816

Дан параллелепипед ABCDA  ′B′C′D′ с основаниями ABCD, A ′B′C′D′ и боковыми рёбрами AA ′,BB′,CC′,DD ′ . Все рёбра параллелепипеда равны. Плоские углы при вершине B  также равны. Известно, что центр сферы, описанной около тетраэдра    ′  ′
AB CD , лежит в плоскости   ′
AB C  . Радиус этой сферы равен 2. Найдите длину ребра параллелепипеда.

Источники: ДВИ - 2021, вариант 216, задача 7 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

В вершине В сходятся 3 равных угла, что можно сказать об отрезках-диагоналях граней, лежащих напротив этой вершины? (Строго обосновать этот факт можно через треугольники, равные по 2-м сторонам и углу между ними!)

Подсказка 2

В какой ещё из вершин параллелепипеда сходятся 3 равных угла? Какой вывод можно сделать об отрезках-диагоналях граней, исходящих из этой же вершины?

Подсказка 3

Каким свойством в таком случае обладает тетраэдр D'AB'C: у него равны боковые рёбра и в основании лежит правильный треугольник? Таким образом мы можем вычислить все его стороны!

Подсказка 4

Восстановите длину стороны ромбов-граней по найденным диагоналям и можно записывать ответ!

Показать ответ и решение

Грани параллелепипеда являются ромбами. Поскольку плоские углы при вершине B  равны, равны также и плоские углы при вершине   ′
D . Стало быть,   ′   ′ ′     ′
AD = B D = CD как равные диагонали ромбов и, по той же причине,    ′   ′
AB  = BC = AC  . Таким образом, центр сферы, описанной около тетраэдра   ′  ′
AB CD , является центром окружности, описанной около правильного треугольника   ′
AB C  , а также является основанием высоты тетраэдра, опущенной из вершины  ′
D . Отсюда получаем    ′  √ -   ′  √ -
AB  =2  3,AD  =2  2  . Итак, диагонали ромба равны  √ -
2  3  и  √ -
2  2  , значит, его сторона равна √ -
  5.

Ответ:

 √5

Ошибка.
Попробуйте повторить позже

Задача 9#43959

Дана усечённая пирамида ABCA  B C
     1 1 1  с боковыми рёбрами AA
   1  , BB
  1  , CC
   1  (ABC ∥A B C )
        1 1 1  , такая, что треугольник BB1C  — равносторонний. На ребре AA1  , перпендикулярном основанию ABC  пирамиды, лежит точка N  такая, что AN :NA1 = 1:2.  Сфера Ω  с радиусом √-
 5  проходит через вершины треугольника BB1C  и касается отрезка AA1  в точке N  .

(a) Найдите длину ребра BB1  .

(b) Пусть дополнительно известно, что             ∘ --
∠ABC  =arccos  25  . Найдите угол между прямой AA1  и плоскостью BB1C  , а также длину ребра A1B1.

Подсказки к задаче

Пункт а), подсказка 1

Введем обозначения: пусть E – вершина пирамиды, O – центр сферы ω, O₁ – центр описанной окружности треугольника BB₁C, а F – середина BC. Если треугольник BB₁C равносторонний, то чем еще будет являться точка O₁? А какие прямые будут проходить через нее?

Пункт а), подсказка 2

Верно, O₁ будет также точкой пересечения медиан, значит через нее пройдет прямая B₁F, Вы даже можете спокойно найти, в каком отношении точка O₁ поделит отрезок B₁F. А что тогда можно будет сказать про взаимное расположение прямой NO₁ и плоскости (ABC)?

Пункт а), подсказка 3

Конечно, прямая NO₁ будет параллельна плоскости (ABC). А теперь поработаем с нашей сферой! Из условия сфера касается AA₁ в точке N, а также проходит через вершины треугольника BB₁C, чему тогда будут перпендикулярны прямые OO₁ и ON?

Пункт а), подсказка 4

OO₁ ⊥ (BB₁C), ON ⊥ AA₁, а еще по условию AA₁ ⊥ (ABC), тогда ON будет параллельна плоскости (ABC)! Остается понять, что точка O₁ совпадает с точкой O. Для этого рассмотрите плоскость α, которая будет проходить через точку N параллельно плоскости (ABC), а также рассмотрите прямую l, которая перпендикулярна (BB₁C) и проходит через точку O₁. Что будет, если прямая l будет лежать в плоскости α?

Пункт а), подсказка 5

Действительно, такой ситуации быть не может, ведь тогда FB₁ ⊥ l, FB₁ ⊥ BC, а это две разные прямые, которые параллельны (ABC), тогда получается, что (BB₁C) ⊥ (ABC), а такого не может быть в нашей пирамиде! Тогда делаем вывод, что l пересекает α в одной точке, поэтому O₁ = O, что и хотелось показать. Теперь вовсе не составит труда найти сторону равностороннего треугольника BB₁C, если известно, что радиус его описанной окружности совпадает с радиусом сферы.

Пункт б), подсказка 1

Пусть O' – проекция O на (ABC), а B₁' – проекция B₁ на (ABC). Какой прямой в плоскости (ABC) будет принадлежать точка B₁'?

Пункт б), подсказка 2

Конечно, B₁' ∈ AB, можем даже узнать, в каком отношении точка O' будет делить отрезок FB₁' (покажите, что оно будет равно FO : OB₁). Тогда теперь можно будет найти длину отрезка B₁'F, нужно всего лишь показать, что треугольник BB₁'C равнобедренный, доказав равенство треугольников B₁B₁'B и B₁B₁'C. И нужный угол легко найдется, если рассмотреть угол между B₁B₁' || A₁A и нужной плоскостью.

Пункт б), подсказка 3

Пусть T – проекция O' на AB. Легко понять, что A₁B₁ = AB₁', тогда задача поиска A₁B₁ сведется к тому, что нужно будет найти AB₁' = AT + TB₁'. Найдите длину O’T, поработав с треугольником BB₁'C, а зная O’T, можно будет легко найти AT и TB₁', используя теорему Пифагора, а также факт, что AO' = ON.

Показать ответ и решение

PIC

Отметим точку E  в качестве вершины пирамиды, точку O  в качестве центра ω  , точку O1  в качестве центра описанной окружности треугольника BB1C  и F  в качестве середины BC  . Так как BB1C  равносторонний, то O1  это еще и центр пересечения медиан, а значит, B1F  проходит через O1  и FO1 :O1B1 = 1:2  и NO1∥ABC  . Так как ω  проходит через вершины треугольника BB1C  и касается отрезка AA1  в точке N  , то OO1⊥BCC1  и ON ⊥AA1  . Мы знаем, что AA1 ⊥ABC  и поэтому NO ∥ABC  . Получается, что мы знаем, что точка O  лежит на плоскости α  , проходящей через N  и параллельной ABC  , и лежит на прямой l  , перпендикулярной BB1C  и проходящей через O1  . Значит, либо l  принадлежит α  , но тогда FB1  перпендикулярна двум разным прямым параллельным ABC  (BC  и l  ) и тогда все три стороны перпендикулярны основанию, а такого не бывает, либо l  и α  пересекаются в одной точке и O1 =O  . Тогда BO =BO1 = √5  и BB1 = √15  (по формуле для равностороннего треугольника).

PIC

Спроецируем точки O  и B1  на плоскость ABC  . Тогда так как проекция A1  на ABC  это A  , то         ′
A1B1∥AB 1  и поэтому  ′
B ∈ AB  . Также можно заметить             ′  ′ ′
F O:OB1 = FO :O B1 = 1:2  .

Прямоугольные треугольники B1B′1B  и B1B′1C  равны по катету и гипотенузе, поэтому BB′1 =CB ′1  . Значит, высота в равнобедренном треугольнике BB ′1C  равна B ′1F  , так как F  середина BC  и равна              √--∘--  ∘--
BF |tgB ′1BF |= -125 32 =  458  . Тогда

                                                     ∘--
                  ′          ′          (B′1F-)       -458-  1--
∠(AA1,BCB1)= ∠(B1B1,BCB1 )= ∠B1B1F =arcsin B1F  = arcsin √45 = √2
                                                      2

Значит, ∠(AA1,BCB1 )= π4  . Тогда            ∘ --
FB ′1 = F√B21=  485

Пусть T  — проекция O′ на AB  . Тогда O′T = O′B′cosB ′O ′T = 2B′Fcos1∠B ′O′C = 2B′FcosB ′BC = 2∘ 45∘-2= 1
        1    1     3 1   2   1     3 1     1    3  8   5  и       ∘----------- ∘ 3-
B1′T =  O′B′12− O ′T2 = 2  . С другой стороны, поскольку           √-
AO ′= NO =  5  , то     √----------
AT = AO ′2− O′T2 = 1  . Отсюда                         ∘ --
A1B1 =AB ′1 = AT +TB ′1 = 2+ 32  .

Ответ:

 (a)√15,

  π    ∘-3
(b)4,2+   2

Ошибка.
Попробуйте повторить позже

Задача 10#90887

Тетраэдр ABCD  с остроугольными гранями вписан в сферу с центром O.  Прямая, проходящая через точку O  перпендикулярно плоскости ABC  , пересекает сферу в точке E  такой, что D  и E  лежат по разные стороны относительно плоскости ABC.  Прямая   DE  пересекает плоскость ABC  в точке F  , лежащей внутри треугольника ABC.  Оказалось, что ∠ADE = ∠BDE, AF ⁄= BF  и          ∘
∠AF B = 80 . Найдите величину ∠ACB.

Показать ответ и решение

Первое решение.

Заметим, что точка E  равноудалена от точек A,B,C  , так ее проекция на плоскость ABC  совпадает с проекций точки O  на эту плоскость и является центром описанной окружности треугольника ABC  .

Рассмотрим треугольники ADE  и BDE.  Они имеют пару равных сторон AE  и BE  , общую сторону DE  и равные углы ADE  и BDE.  Из теоремы синусов следует, что эти треугольники либо равны, либо углы DAE  и DBE  дополняют друг друга до    ∘
180.  Первая ситуация невозможна, так как в случае равенства треугольников ADE  и BDE  точки A  и B  равноудалены относительно любой точки на стороне DE  , но по условию AF ⁄=BF.  Значит,                 ∘
∠DAE + ∠DBE = 180.

Рассмотрим точку X  пересечения луча AF  со сферой Ω  , описанной около тетраэдра ABCD.  Заметим, что луч AF  лежит в плоскостях ABC  и AED  , а значит точка X  лежит на описанных окружностях треугольников ABC  и AED.  Точка E  равноудалена относительно всех точек описанной окружности треугольника ABC;  в частности, AE = XE.  Из вписанности четырехугольника AEXD  следует, что ∠DAE + ∠DXE = 180∘.  Раз AE = XE  , то E  - середина дуги AX  описанной окружности треугольника ADE  , и значит ∠ADE  =∠XDE  .

Используя выведенные ранее равенства углов, заключаем, что треугольники DBE  и DXE  равны по второму признаку:

∠DBE = 180∘ − ∠DAE =∠DXE, ∠XDE  = ∠ADE = ∠BDE,

сторона DE  – общая. Раз треугольники DBE  и DXE  равны, то вершины B  и X  равноудалены относительно любой точки на стороне DE;  в частности, BF = FX  .

Осталось посчитать углы в плоскости ABC.  Последовательно используя вписанность четырехугольника ABXC  , равнобедренность треугольника BFX  и теорему о внешнем угле для треугольника BF X  , пишем

               1                 1
∠ACB  =∠AXB  = 2 ⋅(∠FXB + ∠FBX )= 2 ⋅∠AF B = 40∘

________________________________________________________________________________________

Второе решение.

Пусть луч AF  пересекает сферу Ω  , описанную около тетраэдра ABCD  , в точке X  . По построению точки E  верно соотношение EX = EA  , которое влечет за собой равенство ∠ADE = ∠EAF  . Аналогичными рассуждениями получаем, что ∠BDE = ∠EBF  , и, следовательно, ∠EAF = ∠EBF  .

Обозначим точку пересечения прямой OE  с плоскостью ABC  , являющуюся центром описанной окружности треугольника ABC  , через O1  . Тогда ∠O1AE = ∠O1BE  .

Рассмотрим трехгранные углы AO1EF  и BO1EF  . В них совпадают плоские углы EAF  и EBF  , плоские углы O1AE  и O1BE  и двугранные углы при ребрах AO1  и BO1  прямые. Следовательно, соответствующие трехгранные углы равны. А значит равны и плоские углы ∠FAO1 =∠F BO1  . Отметим, что это равенство можно вывести и из теоремы косинусов для трехгранных углов. Указанное равенство возможно в двух случаях: либо точка F  лежит на серединном перпендикуляре к AB  (точки A  и B  симметричны относительно FO1  ), либо точка F  лежит на описанной окружности треугольника ABO1  . Первый случай запрещен условием AF ⁄= BF  , значит, имеет место второй. Тогда ∠AOB = ∠AFB = 80∘ и является центральным для угла ACB  в описанной окружности треугольника ACB  . В результате заключаем, что ∠ACB  =40∘ .

Ответ:

 40∘

Ошибка.
Попробуйте повторить позже

Задача 11#51630

В основании треугольной пирамиды SABC  лежит прямоугольный треугольник ABC  с гипотенузой BC = 2√3  . Сфера ω  касается плоскости основания пирамиды и касается всех трёх её боковых рёбер в их серединах. Пусть Ω  — сфера, описанная около пирамиды SABC.

(a) Найдите расстояние между центрами сфер ω  и Ω  .

(b) Найдите отношение радиусов сфер ω  и Ω  .

(c) Пусть дополнительно известно, что ∠SAB = arccos1.
            4  Найдите объём пирамиды SABC  .

Показать ответ и решение

PIC

Пусть O  — центр сферы ω;K,L,M  — основания перпендикуляров, опущенных из точки O  на ребра AS,BS,CS  соответственно; SH  — высота пирамиды SABC; r  и R  — радиусы сфер ω  и Ω  соответственно.

a) Поскольку точка O  лежит на серединном перпендикуляре к отрезку AS,  она равноудалена от концов этого отрезка, т.е. OA =OS.  Аналогично OB =OS  и OC =OS.  Значит, OA = OB =OC = OS,  поэтому точка O  является центром сферы Ω  . Следовательно, расстояние между центрами сфер равно нулю.

b) Из равенства прямоугольных треугольников SOK  , SOL  и SOM  (OK = OL = OM = r,OS  — общая сторона) следует, что SK = SL =SM.  Поскольку точки K, L,M  — это середины боковых рёбер пирамиды, отсюда получаем, что боковые рёбра равны между собой. Тогда высота пирамиды проходит через центр окружности, описанной около основания (действительно, ΔSHA  =ΔSHB  = ΔSHC  по катету и гипотенузе, откуда AH = BH = CH  ). Но в пирамиде OABC  боковые рёбра OA, OB,OC  также равны между собой как радиусы сферы Ω  ; значит, и её высота, проведённая из вершины O  проходит через центр окружности, описанной около основания. Таким образом, высота пирамиды SH  проходит через точку O.  Кроме того, точка H  является центром окружности, описанной около основания. Поскольку треугольник ABC  прямоугольный, H  — это середина гипотенузы BC.  Так как отрезок OH  перпендикулярен плоскости основания, он равен радиусу r  сферы ω.

Для нахождения соотношения между радиусами рассмотрим прямоугольный треугольник SHC.  Точка M  — середина гипотенузы SC,  на катете SH  находится точка O,  причём SO = CO =R  , OH = OM = r.  Треугольники CHO  , CMO  и SMO  равны по катету и гипотенузе, следовательно, CH = CM  =SM.  Значит, CH = 1SM, ∠HSC = 30∘.
     2  Тогда из треугольника SOM  находим, что r:R = 1:2.

c) SC = 2CH = BC =2√3,  поэтому треугольник SBC  — равносторонний, SH = SB ⋅ √3= 3.
         2  B равнобедренном треугольнике SAB  известны боковые стороны          √ -
SB =SA = 2 3  и угол при основании            1
∠SAB = arccos4.  Отсюда находим, что                   √-
AB = 2SA ⋅cos∠SAB =  3  . По теореме Пифагора для треугольника ABC  находим, что AC =3,  поэтому       1    √-
SABC =2 ⋅3⋅ 3;  объём пирамиды V  равен 1    3√3-  3√3
3 ⋅3⋅ 2 =  2 .

Ответ:

(a) 0

(b) 1 :2

(c) 3√3
 2

Ошибка.
Попробуйте повторить позже

Задача 12#51629

На ребре CC
   1  правильной треугольной призмы ABCA  B C
     1 1 1  выбрана точка M  так, что центр сферы, описанной около пирамиды MAA1B1B,  лежит в грани AA1B1B.  Известно, что радиус сферы, описанной около пирамиды MABC,  равен 5,  а ребро основания призмы равно  √-
4 3  . Найдите:

(a) отношение объёма пирамиды MAA1B1B  к объёму призмы

(b) длину отрезка MC

(c) площадь полной поверхности призмы

Источники: Физтех-2012, 11.6 (см. olymp.mipt.ru)

Показать ответ и решение

PIC

Введём обозначения: K  — центр грани ABC; L− середина ребра AB; Q  — центр сферы, описанной около пирамиды MAA1B1B  (т.е. Q  — центр грани AA1B1B  ); O  — центр сферы, описанной около пирамиды MABC  .

(a) -VMABC---= 1 ⋅ MC-;-VMA1B1C1-= 1⋅ MC1-⇒ VMABC+VMA1B1C1 = 1⋅ MC+MC1 = 1,
VABCA1B1C1  3  CC1  VABCA1B1C1   3 CC1      VABCA1B1C1     3   CC1     3  3начит, объём пирамиды MAA1B1B  составляет две трети объёма призмы.

(b) Сторона равностороннего треугольника ABC  равна  √-
4 3  , следовательно,       √-  1√-
CK  =4 3 ⋅ 3 = 4  , как радиус описанной окружности.

Рассмотрим прямоугольную трапецию CKOM  . В ней известны стороны CK  =4,OM = 5  и диагональ OC = 5.  По теореме Пифагора из треугольника OCK  находим, что OK = 3.  Опустим из точки O  перпендикуляр OH  на отрезок MC  . Тогда MC  =2 ⋅CH  =2⋅KO = 6.

(c) Обозначим BB1 =h.  Тогда

           ∘ ------                        ∘-----------
    h        h2         ∘ --2-----------2   ( h   )2
QL = 2,QB =   4 + 12,QM  =  CL + (QL− MC ) =    2 − 6 + 36

Отрезки QB  и QM  равны как радиусы сферы. Решая получающееся уравнение, находим, что h = 10.  Тогда площадь поверхности призмы       √-   √-         √-    √ -
S = 2⋅43⋅(4 3)2 +3⋅10⋅4 3= 144 3.

Ответ:

(a) 2:3

(b) 6

(c) 144√3

Ошибка.
Попробуйте повторить позже

Задача 13#72979

В сферу радиуса √3-  вписан параллелепипед, объём которого равен 8.  Найдите площадь полной поверхности параллелепипеда.

Подсказки к задаче

Подсказка 1

У нас в сферу вписан параллелепипед. Тогда, на самом деле, он является прямоугольным. А где лежит центр нашей сферы?

Подсказка 2

Конечно, на главной диагонали d параллелепипеда! Давайте обозначим его ребра за a, b и c. Тогда с одной стороны, d²=a²+b²+c², с другой стороны, d²=12. Т.к. по условию объем равен 8, то abc=8. Хотелось бы найти a,b,c, но мы имеем всего 2 уравнения. Может, можно как-то схитрить?

Подсказка 3

Мы видим, что выражения a²+b²+c²=12 и abc=8 можно связать через неравенства о средних: 12=a²+b²+c²≥3(abc)^(2/3)=12. Подумайте, когда такое может получится, и завершите решение!

Показать ответ и решение

PIC

Поскольку около параллелепипеда описана сфера, этот параллелепипед — прямоугольный. Обозначим его рёбра, исходящие из одной вершины, через a  , b  и c  . Диагонали параллелепипеда равны диаметру описанной сферы, а объём равен abc  . Из условия задачи следует, что a2+ b2+c2 = 12,abc= 8  .

По неравенству Коши:

12= a2 +b2+ c2 ≥3√3a2b2c2-=3√382-= 12

Так как равенство достигается только в случае a2 =b2 = c2  , то a= b= c= 2  и площадь поверхности: 6a2 = 24.

Ответ: 24

Ошибка.
Попробуйте повторить позже

Задача 14#72980

В треугольной пирамиде SABC  ребро SA  перпендикулярно плоскости ABC,∠SCB = 90∘,BC = √5,AC =√7-  . Последовательность точек On  строится следующим образом: точка O1  — центр сферы, описанной около пирамиды SABC  , и для каждого натурального n ≥2  точка On  есть центр сферы, описанной около пирамиды On−1ABC  . Какую длину должно иметь ребро SA  , чтобы множество {On} состояло ровно из двух различных точек?

Подсказки к задаче

Подсказка 1

Т.к. SA ⊥ (ABC), то угол ∠SAB=90⁰. По условию ∠SCB=90⁰. Это означает, что наши точки лежат на сфере, с диаметром SB. А на какой прямой лежат центры O₁, O₂, ...?

Подсказка 2

Правильно, на перпендикуляре к плоскости (ABC), проведенной в точке X- середине AB. Мы хотим, чтобы множество наших центров состояло всего из двух точек. Давайте тогда поймем, когда O₃ совпадает с кем-то из O₁, O₂.

Подсказка 3

Ясно, что с O₂ она совпадать не может. Т.к. O₁- середина SB, то и O₃- середина SB. Т.к. O₃ равноудалена от A, B, C и O₂, а O₂ равноудалена от A, B, C и O₁=O₃, то AO₃BO₂- ромб с углом 60°. Я думаю, что вы сможете закончить решение!

Показать ответ и решение

PIC

 Применим теорему о трех перпендикулярах. В силу того, что SA ⊥ (ABC )  и SC ⊥ BC  , получим, что проекция SC  на плоскость (ABC )  перпендикулярна BC  , то есть AC ⊥ BC.

Заметим, что середина гипотенузы AB  - точка X  это центр описанной окружности прямоугольного треугольника △ACB  . Аналогично середина гипотенузы SB  - точка Y  - центр описанной окружности прямоугольного треугольника △SAB  . Тогда если провести перпендикуляр к плоскости (ABC )  в точке X  и перпендикуляр к плоскости (SAB)  в точке Y  , то центр описанной окружности O1  пирамиды SABC  - точка пересечения этих перпендикуляров. Но перпендикуляр к плоскости (ABC )  в точке X  совпадает с прямой XY  . То есть точка O1  и есть точка Y  .

При этом на прямой XY  (перпендикуляр к плоскости (ABC )  в точке X  ) будут лежать все On  в силу того, что XY  - ГМТ точек равноудаленных от A,B,C.

То есть точка O2  - центр треугольной пирамиды O1ABC  - опять-таки должна лежать на прямой XY.

PIC

Хотелось бы добиться того, чтобы O3 = O1  (O3 ⁄=O2  по очевидным причинам). Но тогда O3 = Y  . То есть середина гипотенузы △SAB  равноудалена от точек A,B,O2  . Так же точка O2  равноудалена от точек A,B,Y  . Но тогда AY BO2  должен быть ромбом, при этом его диагональ YO
   2  должна быть равна стороне. Понятно, что тогда ∠AY B = 120∘ . Значит, что ∠SBA = 30∘ , то есть SA = tan30∘⋅AB = 1√-⋅√AC2-+-BC2 = √1√2-=2.
                 3               3

Ответ:

 2

Рулетка
Вы можете получить скидку в рулетке!