Тема Бельчонок

Комбинаторика на Бельчонке: способы, вероятности, графы, турниры, клетки

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела бельчонок
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#86092

Три человека независимо задумали по одному целому числу от 1  до 9  . Какова вероятность, что произведение этих трёх чисел делится на 10  ?

Источники: Бельчонок - 2024, 11.1 (см. dovuz.sfu-kras.ru)

Показать ответ и решение

Обозначим событие A = { Произведение 3  чисел не делится на 10} , B = { Среди 3  чисел нет 5},C = { Среди 3  чисел нет чётного }.  Тогда

P(A)= P(B+ C)= P(B)+ P(C)− P (BC )=

  (8)3  ( 5)3  (4)3
=  9  +   9  −  9

Вероятность искомого события равна

   ( )3  (  )3  ( )3
1−  8   −  5  +  4  = -52
    9      9     9    243
Ответ:

-52
243

Ошибка.
Попробуйте повторить позже

Задача 2#86094

По кругу растет шесть деревьев. Утром на каждом дереве сидел один бельчонок. Вечером опять на каждом дереве сидел один из тех же шести бельчат, ни один бельчонок не сидел на том же самом дереве, и не сидел на дереве, которое было соседним с тем, которое он занимал утром. Сколькими способами это можно было сделать?

Источники: Бельчонок - 2024, 11.3 (см. dovuz.sfu-kras.ru)

Показать ответ и решение

Любой рассадке вечером можно сопоставить рассадку, в которой белка, сидевшая на дереве с номером x  (нумерация по часовой стрелке), сидит на дереве (x+ 3)  по модулю 6 (то есть просто белку переместили на противоположное место). Нетрудно видеть, что это противоположное место является либо тем местом, на котором белка сидела утром, либо соседним с ним. Значит, можно решить задачу, в которой каждая белка либо осталась на своём месте, либо перешла на соседнее.

Пусть изначально белки сидели в порядке ABCDEF  . Рассмотрим случаи:

1)  Все остаются на своих местах. Тогда есть только один случай (ABCDEF  ).

Если A  перемещается вправо на место B  , у B  есть два варианта действий. B  может переместиться влево(на место A  ) или переместиться вправо на место C  .

2)  Рассмотрим движение по кругу. Если B  перемещается на место C  , то единственный способ для C  — переход к D  , переход   D  к E  , переход E  к F  и переход F  к A  , в результате чего достигается F ABCDE  . Каждый бельчонок может также двигаться влево(BCDEF A  ). Таким образом, тут два случая.

3)  Некоторые бельчата из соседних пар AB  , CD  , EF  меняются местами, оставаясь в той же паре. Если A  перемещается на место B  , B  перемещается на место A  . C  может остаться на месте, или переместиться на D  , E  может остаться на месте, или переместиться на F  . Это даёт 2⋅2⋅2= 8  случаев, но бельчата не могут все оставаться на месте, поскольку мы уже посчитали такую возможность в случае 1  , и, следовательно, здесь 7  случаев. Кроме этого, могут быть пары BC,DE,F A  что даёт еще 7  случаев.

4)  Меняются местами не в соседних парах, а в парах, разделённых одним бельчонком. Если бы A  и B  поменялись местами, D  и    E  могли бы поменяться местами, и это не было бы учтено предыдущими группировками. При этом два бельчонка, разделяющие пары, сидят на прежних местах. Это может происходить в трёх случаях (A  и D  не движутся, B  и E  не движутся, C  и F  не движутся).

Всего случаев 1 +2+ 7+ 7+ 3= 20  .

Ответ: 20

Ошибка.
Попробуйте повторить позже

Задача 3#86097

Если сегодня плохая погода, то завтра с вероятностью 1 будет хорошая погода. Если сегодня хорошая погода, то завтра хорошая погода будет с вероятностью 0,4. Какова вероятность, что 7 марта будет хорошая погода, если 3 марта плохая и хорошая погоды равновероятны? (Погода одинаковая весь день и может быть только плохой или хорошей).

Источники: Бельчонок - 2024, 11.1 (см. dovuz.sfu-kras.ru)

Показать ответ и решение

Обозначим P
 n  вероятность хорошей погоды в день n  считая 3  марта за первый день. Тогда

Pn = 0,4Pn−1+ (1− Pn−1)= 1− 0,6Pn

(Если в n− 1  -й день погода плохая, то в n  -й она точно хорошая, а если хорошая, то в n  -м дне будет хорошей с вероятностью 0,4  ). По условию P1 = 1
    2  . Находим последовательно

P2 =0,7

P = 0,58
 3

P4 = 0,652,P5 =0,6088
Ответ:

0,6088

Ошибка.
Попробуйте повторить позже

Задача 4#69399

У бельчонка есть 5 орехов, 8 грибов и 11 ягод. Сколькими способами он может выложить все эти предметы в ряд так, чтобы никакие две ягоды не лежали рядом?

Источники: Бельчонок-2023, 11.1 (см. dovuz.sfu-kras.ru)

Показать ответ и решение

Первое решение.

Выложим в ряд орехи и грибы — сделать это можно  5
C13  способами. Далее рассмотрим позиции между выложенными орехами и грибами и по краям от них — получим 14 мест для ягод. Остаётся выложить их туда  11
C14  способами.

Второе решение.

Сначала объединим орехи и грибы в неягоды, откуда получим 13 неягод и 11 ягод. Далее назовём нейтроном пару (неягода, ягода).

Если на крайней левой позиции в ряду лежит неягода, то 11 ягод образуют нейтроны, поскольку рядом с ними не могут находиться другие ягоды, и левее каждой точно есть неягода. Отсюда имеем 11 нейтронов и 2 дополнительные неягоды. В итоге получаем  2
C13  способов поставить эту неягоду, то есть 78 расстановок.

Если на крайней левой позиции лежит ягода, то остаются только 10 ягод, каждая из которых попадает в свой нейтрон. Получаем 10 нейтронов и 3 неягоды, откуда имеем C313 = 286  расстановок.

Получаем 364= C314  расстановки. Остаётся вспомнить, что неягоды делятся на два вида. Чтобы учесть это, домножим все способы на 51!3!⋅8!,  то есть число способов расставить 5  орехов среди тринадцати неягод, откуда и получаем ответ.

Ответ:

 C5 ⋅C11
 13  14

Ошибка.
Попробуйте повторить позже

Задача 5#69402

16 команд провели турнир по хоккею, каждая команда сыграла с каждой по разу. За победу начислялось 2 очка, за ничью — 1 очко, за проигрыш очков не давалось. При этом каждые три команды в играх между собой набрали разное количество очков. Какое наибольшее число ничьих могло быть в этом турнире?

Источники: Бельчонок-2023, 11.4 (см. dovuz.sfu-kras.ru)

Показать ответ и решение

Решим задача для произвольного N.  Докажем утверждение, известное в олимпиадных кругах как теорема Турана.

Оценка: Докажем по индукции, что число ничьих не превосходит N2
4 .

База индукции: При N = 2  это очевидно. При N = 3  все три игры не могли закончиться вничью, иначе у всех команд было бы одинаковое число очков.

Шаг индукции: Рассмотрим две команды A  и B,  сыгравшие вничью. С каждой из остальных команд хотя бы одна из них сыграла не вничью, иначе образуется запрещенная тройка команд. Значит, общее число ничьих в играх с участием этих двух команд не больше N − 1.  По предположению индукции в играх между остальными командами было не более (N−2)2
   4  ничьих. Следовательно, общее число ничьих не превосходит (N−2)2          2
--4-- +N − 1= N4-.

Пример: Пронумеруем команды числами от 1  до N.  Пусть каждые две команды с номерами разной чётности сыграли вничью, а в играх между командами с номерами одной чётности победила команда в меньшим номером. Если N = 2k− 1,  то k  команд имеют нечётный номер и k− 1  команда - чётный, поэтому количество ничьих равно k(k− 1).  При N =2k  получаем по k  команд с номерами каждой чётности и k2  ничьих. В обоих случаях полученное число равно [ 2]
 N4 .  При этом каждые три команды в играх между собой набрали либо 0, 2 или 4 очка, если имеют номера одной чётности, либо 1,2,3  очка, если две из них имеют номера одной чётности, а третья - другой.

Замечание. Заметим, что идея примера приходит из двудольного графа, где разная чётность номеров отвечает разным компонентам.

Подставим N = 16  и получим ответ.

Ответ: 64

Ошибка.
Попробуйте повторить позже

Задача 6#69404

Андрей, Боря, Вася, Гриша, Денис и Женя после олимпиады собрались в кинотеатр. Они купили билеты на 6 мест подряд в одном ряду. Андрей и Боря хотят сидеть рядом, а Вася и Гриша не хотят. Сколькими способами они могут сесть на свои места с учётом их пожеланий?

Источники: Бельчонок-2023, 11.1 (см. dovuz.sfu-kras.ru)

Показать ответ и решение

Число способов рассадки, когда Андрей и Боря сидят рядом, равно 2 ⋅5!= 240  (достаточно объединить их в одного человека двумя способами). Способов рассадки, при которых и Андрей-Боря, и Вася-Гриша окажутся рядом, равно 2 ⋅2 ⋅4!= 96.  Поэтому они могут сесть 240− 96 =144  способами.

Ответ: 144

Ошибка.
Попробуйте повторить позже

Задача 7#69407

Несколько команд провели турнир по футболу, каждая команда сыграла с каждой по разу. За победу начислялось 3 очка, за ничью — 1 очко, за проигрыш очков не давалось. Команда “Бельчата” заняла первое место, набрав больше всего очков, а команда “Метеор” — последнее место, набрав меньше всего очков. Если бы за победу давали не 3 очка, а 2, то наоборот, команда “Метеор” стала бы первой, а команда “Бельчата” — последней. Найдите наименьшее количество команд, которое могло участвовать в таком турнире.

Показать ответ и решение

Оценка: До пересчёта у команды «Бельчата» было хотя бы на 2 очка больше, чем у команды «Метеор», а после пересчёта - хотя бы на 2 очка меньше. Кроме того, чтобы после пересчёта оказаться первой, команда «Метеор» должна иметь хотя бы одну победу. Действительно, в каждом матче разыгрывается 2 очка, поэтому если бы у команды «Метеор» не было побед, то она набрала бы не более половины возможного числа очков и не могла бы стать первой. Аналогично, для того чтобы команда «Бельчата» стала последней, у неё должно быть поражений больше, чем побед. Таким образом, после пересчёта команда «Метеор» потеряет как минимум 1 очко. Следовательно, команда «Бельчата» должна потерять не менее 5 очков, т. е. у неё должно быть не меньше пяти побед и не меньше шести поражений. Поэтому она сыграла как минимум 11 матчей, значит, в турнире участвовало не менее 12 команд.

Пример: Приведён в таблице (первой буквой В обозначен выигрыш, два последних столбца — количество очков до и после пересчета соответственно).

Команда Б  2  3  4  5  6  7  8  9  10  11  M  Сумма 1 Сумма 2
Б  B B B B B 0 0 0 0 0 0 15 10
2 0 1 1 1 1 B B B 0 0 1 14 11
3  0 1 1 1 1 0 B  B  B  0 1 14 11
4 0 1 1 1 1 0 0 B B B 1 14 11
5  0 1 1 1 1 B  0 0 B  B  1 14 11
6 0 1 1 1 1 B B 0 0 B 1 14 11
7  B  0 B  B  0 0 1 1 1 1 1 14 11
8  B  0 0 B  B  0 1 1 1 1 1 14 11
9  B  0 0 0 B  B  1 1 1 1 1 14 11
10  B  B  0 0 0 B  1 1 1 1 1 14 11
11  B  B  B  0 0 0 1 1 1 1 1 14 11
M  B  1 1 1 1 1 1 1 1 1 1 13 12
Ответ:

 12

Ошибка.
Попробуйте повторить позже

Задача 8#74648

Борис раскладывает 8 белых и 8 чёрных шариков по двум коробкам. Настя наугад выбирает коробку, а потом не глядя берёт из неё шарик. Может ли Борис так разложить шарики по двум коробкам, чтобы вероятность вынуть белый шарик была больше 2
3?

Источники: Бельчонок-2022, 11.1 (см. dovuz.sfu-kras.ru)

Показать ответ и решение

Борис положит в первую коробку 1 белый шарик, а во вторую все остальные. Тогда вероятность вынуть белый шарик равна

1  1  7   22  2
2 + 2 ⋅15-= 30 > 3
Ответ: да

Ошибка.
Попробуйте повторить позже

Задача 9#77816

Каким числом способов можно разложить 30 яблок в 3 корзинки так, чтобы в первой корзинке лежало меньше яблок, чем во второй, во второй меньше, чем в третьей, и пустых корзинок не было?

Источники: Бельчонок - 2022, 11 (см. dovuz.sfu-kras.ru)

Показать ответ и решение

Рассмотрим уравнение

a+ b+ c= 30.

Расставим 30  единиц в ряд, выберем два промежутка между единицами и поставим в них по чёрточке. Число единиц слева от первой чёрточки равно a  (число яблок в первой корзине), справа от второй равно c  (число яблок в третьей корзине). Число способов выбрать два промежутка равно 29⋅28-= 406.
 2

Надо вычесть из этого числа количество случаев, когда среди чисел a,b,c  есть равные.

Пусть a= b  . Тогда 2a+ c= 30  , это уравнение имеет 14  ненулевых решений (2a  чётное и может изменяться от 2  до 28  ). Аналогично будет по 14  случаев, когда b= c  или a= c.

Итак, 406− 3⋅14 =364  . Случай a= b= c  посчитан один раз в общем числе способов и три раза вычтен, а надо его исключить всего один раз, поэтому требуется прибавить 2.

Число 364+ 2= 366  равно числу упорядоченных троек различных a,b,c  . Но нужен порядок a< b< c  , поэтому разделим на число перестановок трёх элементов: 366-
 6 = 61.

Ответ: 61

Ошибка.
Попробуйте повторить позже

Задача 10#105885

Для отбора на соревнования борец Владимир должен был провести три схватки и одержать подряд хотя бы две победы. Его соперниками были Андрей (А) и Борис (Б). Владимир мог выбрать схему встреч: АБА или БАБ. Вероятность Владимира потерпеть поражение в одной схватке от Бориса равна 0.3,  а от Андрея 0.4;  вероятности постоянны. При какой схеме вероятность отобраться на соревнования больше, и чему равна эта вероятность?

Показать ответ и решение

Пусть Владимир два раза встречается с более слабым соперником, то есть рассмотрим схему БАБ. Тогда вероятность равна

0,7⋅0,6⋅0,3 +0,7⋅0,6⋅0,7+ 0,3⋅0,6⋅0,7= 0,546

Пусть Владимир выбирает схему АБА. Тогда получим

0,6⋅0,7⋅0,4 +0,6⋅0,7⋅0,6+ 0,4⋅0,6⋅0,7= 0,588
Ответ: АБА; 0,588

Ошибка.
Попробуйте повторить позже

Задача 11#94777

Дана квадратная таблица n× n  , где n≥ 2  . В каждую из некоторых k  клеток таблицы ставится по одной фишке так, чтобы в любом квадрате 2 ×2  было ровно 2 фишки. Найдите все значения k  , при которых это можно сделать.

Источники: Бельчонок - 2021, 11.5 (см. dovuz.sfu-kras.ru)

Показать ответ и решение

Если n = 2m  — четное число, то вся таблица разбивается на m2 = n2
     4  квадратов 2× 2  , в каждом из которых находится ровно 2 фишки. Поэтому общее число фишек равно   2   n2-
2m  = 2  .

Пусть теперь n= 2m +1  . Разобьем таблицу на квадраты 2× 2  и фигуры вида:

PIC

так, как показано на рисунке:

PIC

В любой такой фигуре должна стоять хотя бы одна фишка, иначе в квадрате 2× 2  , примыкающем к данной, должно быть не менее 3 фишек — противоречие.

PIC

Таким образом, общее число фишек в таблице не менее 2m2+ m

С другой стороны, поскольку в любом квадрате 2× 2  должно быть ровно 2 пустых клетки (незанятых фишками), то аналогично получаем, что пустых клеток в таблице также не менее 2m2 +m  . И зн̆ачит, фишек в таблице не более

(2m + 1)2− (2m2 +m )= 2m2+ 3m+ 1.

Пример, приведенный на рисунке, показывает, что любое значение числа фишек из указанного промежутка достигается.

PIC

(В этом примере число фишек равно   2
2m  + m+ l  , где 0 ≤l≤ 2m +1  .

Ответ:

 n2
 2  при четном n  ;

любое число из отрезка [  2      2       ]
 2m  + m;2m + 3m+ 1 при нечетном n= 2m+ 1  .

Ошибка.
Попробуйте повторить позже

Задача 12#103396

Сколькими способами можно поставить 17  фишек на шахматную доску 6 ×6,  если фишки нельзя ставить на клетки, имеющие общую сторону?

Источники: Бельчонок - 2020, 11.4 (см. dovuz.sfu-kras.ru)

Показать ответ и решение

Разобьём доску на 9  квадратов 2× 2.  В каждый квадрат можно поставить не больше двух фишек (по диагонали этого квадрата). Значит, в каком-то из квадратов стоит одна фишка, в остальных по две фишки. Если в одном квадрате 2×2  две фишки стоят на чёрных полях, то и в соседнем квадрате две фишки также стоят на чёрных полях. В выделенном квадрате, если он не является угловым, две возможных позиции, чтобы поставить одну фишку, но в двух угловых квадратах по три возможных позиции (см. рисунок).

PIC

PIC

Столько же расстановок будет, если поставить две первые фишки в квадрате 2× 2  на белые поля. Таким образом, число возможных расстановок равно 2⋅(7⋅2+ 2⋅3)= 40.

Ответ: 40
Рулетка
Вы можете получить скидку в рулетке!