Планиметрия на ИТМО
Ошибка.
Попробуйте повторить позже
Окружности и
находятся внутри трапеции
, касаясь друг друга, оснований трапеции, и каждая — своей боковой стороны.
Лучи
и
пересекаются в точке
. Оказалось, что радиус вписанной окружности треугольника
равен радиусу окружности
и равен
Также известно, что
. Найдите площадь треугольника
Источники:
Радиусы и
равны друг другу и высоте трапеции. Из условия про пересечение лучей следует, что
— меньшее
основание.
Проведём вторую касательную к вписанной окружности треугольника параллельную основаниям трапеции. Обозначим за
и
точки пересечения этой касательной с отрезками
и
— трапеция.
Точки касания окружностей и оснований трапеции образуют квадрат со стороной . Если вырезать этот квадрат из трапеции и склеить
оставшиеся части между собой, получится трапеция, равная
.
Более точно, обозначим точки касания окружностей и
с основаниями трапеции
: пусть
и
лежат на
(
ближе к
),
и
лежат на
(
ближе к
). Кроме того, пусть
— точки касания вписанной
окружности
с
соответственно. Кроме того, пусть
и
— точки касания окружностей
и
с боковыми сторонами трапеции,
и
— центры окружностей
и вписанной окружности треугольника
.
Рассмотрим четырёхугольники и
как соответственные.
,
прямые.
Значит оставшиеся углы, и
также равны. Значит, треугольники
и
равны. Следовательно,
треугольники
и
также равны, а значит четырёхугольники
и
равны. Аналогично
Значит,
Пусть — длина высоты треугольника
, проведённой из точки
. Тогда длина высоты треугольника
, проведённой из
точки
равна
. Значит, коэффициент подобия треугольников
и
с одной стороны равен
, а с другой
, откуда
. Значит, площадь треугольника
равна
Ошибка.
Попробуйте повторить позже
В трапеции длины диагонали
и основания
равны. Точка
на луче
такова, что
На прямой
взята точка
такая, что
Известно, что
(При этом
и
Найдите
градусную меру угла
Источники:
равнобедренный, поэтому
Накрест лежащие углы равны:
. Значит,
Повернём картинку на угол относительно точки
так, чтобы точка
перешла в точку
Из доказанного выше равенства углов
следует, что прямая
при этом повороте перейдёт в прямую
Точка
при этом перейдёт в такую точку на прямой
что расстояние от неё до точки
равно
Таких точек две. Одна из них точка
а вторая — какая-то точка
Значит, или
как односторонний угол. Это один из
ответов.
Посмотрим теперь на точку
равнобедренный, причём
равен тому из углов
и
который
является острым (случай прямого угла исключается значениями углов
и
которые даны в каждом их вариантов).
Если
тупой, точка
очевидно лежит на луче
и
Если же
острый,
и точка
находится на луче
При этом во всех вариантах
т.е.
поэтому точка
лежит ближе к
чем
, т.е. попадает на отрезок
Значит,
Ошибка.
Попробуйте повторить позже
Окружности радиуса
и
радиуса
касаются в точке
— центре окружности
радиуса
Точка
— одна из точек
пересечения окружностей
и
Окружность
касается окружности
в точке
и окружности
в точке
. Точка
—
такая точка на прямой
, что треугольники
и
подобны. Найдите
Все указанные в условии касания происходят
внешним образом.
Источники:
Применим инверсию относительно окружности Окружность
перейдёт сама в себя, окружности
и
— в
параллельные прямые
и
первая из которых проходит через точку
переходящую при инверсии переходит сама в
себя.
Точки и
переходят при этой инверсии друг в друга, поскольку
Это равенство следует из подобия треугольников и
никаким другим образом эти треугольники подобны быть не могут, так
как у них общий угол
а точки
и
мы предполагаем различными).
Окружность переходит в окружность, касающуюся прямых
и
в точках
и
соответственно. Так как прямые
параллельны, это значит, что длина отрезка
равна расстоянию между этими прямыми.
Опустим из точки перпендикуляр на прямую
Это перпендикуляр пересечёт окружность
в точке
инверсной основанию
перпендикуляра
и диаметрально противоположной
. Это значит, что
Ошибка.
Попробуйте повторить позже
Четырёхугольник описан вокруг окружности с центром в точке
— точки касания сторон
и
соответственно,
и
— высоты в треугольниках
Найдите длину
отрезка
Источники:
Треугольники и
— прямоугольные с общей гипотенузой и катетом, равным радиусу окружности, поэтому они равны. Значит,
их высоты падают в одну точку общей гипотенузы, то есть
— высота в треугольнике
. Поэтому точки
и
лежат на окружности с диаметром
. Аналогично точки
и
лежат на окружности с диаметром
. Поскольку
диаметры этих окружностей равны, градусные меры дуги
в этих окружностях совпадают. В первой окружности на эту
дугу опирается
, а во второй -
, значит, эти углы равны. (Именно равны, а не дополняют друг друга до
, потому что точки
и
лежат по разные стороны от прямой
, а окружности симметричны относительно
неё).
Аналогично . Сложив это с предыдущим равенством, получим
. Аналогично
, то есть
четырёхугольник
— параллелограмм.
_________________________________________________________________________________________________________________________________________________________________________________
Замечание.
Можно понять, что вершины четырёхугольника инверсны вершинам четырёхугольника
относительно нашей
окружности, то есть мы только что повторили доказательство теоремы о том, что четырёхугольник, инверсный описанному, является
параллелограммом.
_________________________________________________________________________________________________________________________________________________________________________________
Значит, вместо длины отрезка мы можем найти длину отрезка
.
По свойству высоты прямоугольного треугольника, . Аналогично
, откуда
. Кроме того,
угол
в треугольниках
и
общий, поэтому они подобны с коэффициентом
. Значит,
Ошибка.
Попробуйте повторить позже
Точки и
лежат на окружности с центром в точке
Луч
вторично пересекает описанную около треугольника
окружность в точке
причём точка
оказалась внутри этой окружности. Докажите, что
— биссектриса угла
Источники:
Рассмотрим окружность, на которой лежат точки и
Точка
равноудалена от точек
и
поэтому является серединой
дуги
Значит,
— биссектриса угла
в треугольнике
Точка лежит на луче
и находится на том же расстоянии от точки
что точки
и
поэтому по лемме о трезубце
является центром вписанной в треугольник
окружности, а значит,
тоже биссектриса.
Ошибка.
Попробуйте повторить позже
В описанном пятиугольнике даны длины сторон
Диагонали и
пересекаются в точке
Найдите отношение площадей треугольников
и
Источники:
Обозначим точку касания вписанной окружности и стороны за
Тогда точка
лежит на отрезке
Это следует, например, из
теоремы Брианшона (которая гласит, что главные диагонали описанного шестиугольника пересекаются в одной точке) для вырожденного
шестиугольника
Тогда
поскольку
Обозначим отрезки касания, прилегающие к вершине за
, к вершине
— за
и т.д., а полупериметр пятиугольника за
Тогда
Ошибка.
Попробуйте повторить позже
В трапеции боковая сторона
равна диагонали
На меньшей дуге
описанной окружности треугольника
выбрана точка
так, что
Найдите угол
Источники:
Первое решение.
Продлим отрезок за точку
на его длину, получим точку
Пусть углы
и
равны по
Тогда угол
равен
угол
—
Теперь нетрудно вычислить, что углы и
равны по
то есть точки
и
симметричны относительно
Следовательно, угол
равен углу
который, в свою очередь, равен углу
поскольку треугольник
равнобедренный.
Углы
и
в сумме дают
потому что четырёхугольник
— вписанный. Отсюда получаем, что точки
и
коллинеарны.
Осталось заметить, что треугольник прямоугольный, потому что медиана равна половине стороны, к которой она проведена. То
есть угол
прямой, а значит смежный с ним угол
также прямой.
Второе решение.
Из равнобедренности треугольника и параллельности
и
получаем
Пусть прямая пересекается с описанной окружностью треугольника
в точке
Тогда
— вписанная, т.е.
равнобедренная, трапеџия, откуда дуги
и
равны. Отсюда
так как эти углы
опираются на одну дугу.
Значит, в равнобедренном треугольнике
вьполняется равенство
Кроме того,
Идея какого-либо дополнительного построения и ощутимые продвижения в подсчёте углов оцениваются половиной баллов. Только ответ - 0 баллов за задачу.
Ошибка.
Попробуйте повторить позже
Дан треугольник в котором
Из точки
провели биссектрису, которая пересекла описанную
окружность этого треугольника в точке
Найдите, чему равно
где
— центр вписанной окружности треугольника
Источники:
Согласно лемме о трезубце , а по теореме синусов в треугольнике
По теореме синусов в треугольнике имеем
, поэтому по формуле синуса двойного
угла
По формуле косинуса половинного угла
поэтому
Ошибка.
Попробуйте повторить позже
Дан треугольник точка
— центр его вписанной окружности. На лучах
и
соответственно отмечены такие точки (отличные
от
)
и
что
Докажите, что площади треугольников
и
равны.
Источники:
Рассмотрим точку — середину дуги
описанной окружности треугольника
. По лемме о трезубце
.
Треугольники
и
подобны, так как это равнобедренные треугольники с равными углами при основании (углы в точке
равны
как вертикальные, потому что точки
и
лежат на одной прямой — биссектрисе угла
). Аналогично подобны треугольники
и
.
Отсюда получаем
(первое равенство из первого подобия, второе — из второго). Раскрывая пропорцию, имеем . Из этого равенства следует
требуемое равенство площадей треугольников
и
, поскольку углы при вершине
в треугольниках
и
равны как
вертикальные.
Ошибка.
Попробуйте повторить позже
Дан треугольник точка
— центр вписанной окружности, точка
взята таким образом, что точка
является
серединой отрезка
Докажите, что точка
и центры вневписанных окружностей треугольника
лежат на одной
окружности.
Источники:
Докажем, что точки и лежат на одной окружности с центром в
Пусть точка — центр описанной окружности треугольника
;
— такая точка, что
середина
; точки
и
—
середины дуг
и
описанной окружности треугольника
, а точки
— центры вневписанных окружностей
треугольника
, касающихся сторон
и
соответственно. Тогда по лемме о трезубце точки
и
— середины
и
соответственно.
В треугольнике отрезок
является средней линией, значит
. Аналогичные равенства получаем и для остальных
пар отрезков:
и так как
, получаем
то есть точки и лежат на одной окружности с центром в
, что и требовалось доказать. Заметим, что вместо
последнего абзаца можно было применить преобразование подобия (гомотетию) с центром в точке
и коэффициентом