Введение векторов или координат в планиметрии
Ошибка.
Попробуйте повторить позже
Дед Мороз наколдовал на серединах сторон треугольника шестиконечные снежинки, как показано на рисунке:
(вершина треугольника и середина стороны треугольника берутся концами стороны соответствующего правильного шестиугольника)
Докажите, что на полученном новогоднем чуде точки пересечения медиан треугольников и совпадают.
Пусть — произвольная точка плоскости.
Про точку пересечения медиан треугольника известно, что:
(это характеристическое свойство следует из того, что точка пересечения медиан является центром масс )
А требуется доказать, что является ещё и точкой пересечения медиан треугольника , то есть:
Левые части полученных двух векторных равенств совпадают, поэтому надо доказать про правые, что разность правых частей в этих равенствах равна нулевому вектору, то есть (преобразуем по правилу вычитания векторов):
Возьмём серединный треугольник и повернём его вокруг точки на . Получим треугольник такой, что
К тому же,
Значит,
Но тогда получаем требуемое:
Ошибка.
Попробуйте повторить позже
По плоскости ползут три улитки. Каждая улитка движется со своей скоростью прямолинейно и равномерно. Известно, что в некоторые три момента времени все улитки оказывались на одной прямой. Могут ли улитки в какой-то момент времени оказаться в вершинах правильного треугольника?
Источники:
Подсказка 1
Как в геометрии, так и в других разделах математики, зачастую бывает удобно зафиксировать задачу набором переменных. Если мы хотим зафиксировать задачу здесь, то самым банальным набором будет функция движения каждой улитки. Пусть (x_i(t), y_i(t)) - положение улитки относительно времени. Какое тогда условие, при наличии направляющих векторов можно наложить на их координаты, если в некоторый момент времени эти три улитки были
Подсказка 2
Верно, что (x_2(t) - x_1(t))(y_3(t) - y_1(t)) = (x_3(t) - x_1(t))(y_2(t) - y_1(t)). Просто записали векторное произведение векторов от первой ко второй улитке и от первой к третьей. Что теперь можно понять, если у нас нашлось 3 значения таких t(то есть, три раза был момент, когда они все на 1 прямой)? А если подумать какой степени каждая из зависимостей x_i, y_i относительно t?
Подсказка 3
Зависимости x_i, y_i - линейный зависимости(так как каждая улитка движется по линии), а значит, уравнение выше - не выше второй степени. Однако, у него есть три различных корня. Что это значит тогда? Когда такое может быть?
Введем декартову систему координат, и пусть - координаты -й улитки в момент времени . Поскольку улитки движутся прямолинейно и равномерно, то и - линейные функции от времени . Рассмотрим векторы
направленные от первой улитки ко второй и третьей соответственно. Тогда условие принадлежности трех улиток одной прямой равносильно коллинеарности векторов и .
Это в свою очередь равносильно пропорциональности координат этих векторов:
Заметим, что это равенство представляет собой уравнение на переменную степени не выше 2. Нам известно, что у этого уравнения есть три различных корня. Но тогда это уравнение имеет тривиальный вид , поскольку в противном случае у него не может быть больше двух корней. Значит, это уравнение справедливо при любом , и улитки всегда находятся на одной прямой и не могут оказаться в вершинах ни одного треугольника.
Ошибка.
Попробуйте повторить позже
На каждой из двух прямолинейных линий электропередач установлены обслуживающие подстанции. На линии А — через каждые км, на линии В — через каждые км. Если занумеровать их подряд вдоль каждой линии, то расстояния между подстанциями и равно км, между и равно км, между и равно км. Определите, параллельны ли данные линии? Если да, то найдите расстояние между ними. Если нет, то найдите расстояние от подстанции до точки их пересечения.
Источники:
Подсказка 1
Как можно записать условие более ёмко? Можно ввести координаты.
Подсказка 2
Мы можем составить уравнение квадрата расстояния от Aₙ до Bₙ. Как оно может выглядеть?
Подсказка 3
Координаты подстанций будут линейно изменяться. Тогда расстояние можно представить как многочлен второй степени.
Подсказка 4
У нас есть 3 уравнения и 3 неизвестных, можем найти все коэффициенты многочлена. Как понять, будут ли линии пересекаться?
Подсказка 5
Значение многочлена всегда больше 0, так как дискриминант меньше 0. Тогда линии параллельны, а квадрат расстояния между ними равен минимальному значению многочлена. Его можно найти через вершину.
Если ввести декартову систему координат с началом в точке и одной из осей, направленной вдоль линии (можно и иначе), то координаты всех подстанций будут изменяться линейным образом, следовательно, квадраты расстояний будут являться значениями некоторого многочлена второй степени . Найдём его. Будем измерять в условных единицах длины, так что каждая следующая единица соответствует следующей паре подстанций. Тогда
Для простоты расчетов уменьшим все правые части в раз и из полученной линейной системы найдём
Следовательно, искомый многочлен имеет вид
Его дискриминант отрицателен, нигде не обращается в ноль (и всюду положителен). Следовательно, линии не пересекаются. Квадрат расстояния между ними равен минимальному значению , которое достигается при и равно . А само расстояние равно 15.
Линии параллельны, расстояние между ними равно км.
Ошибка.
Попробуйте повторить позже
В треугольнике точка — центр описанной окружности, точка — ортоцентр. Отрезки и параллельно перенесли и последовательно приставили друг другу. Получилась ломаная. Докажите, что отрезок, соединяющий концы ломаной, равен и параллелен
Подсказка 1
Отрезки, которые друг от друга откладывают, и нам важно только расстояние между началом и концом… Да это же задача на векторы! То есть нас просят доказать векторное равенство OH=OA+OB+OC (всё в векторах). Сразу такое доказывать страшно и не понятно как. Может быть преобразовать два каких-то слагаемых из этой суммы, с помощью дополнительного построения?
Подсказка 2
Если у нас есть ортоцентр, то надо пользоваться его свойством. При этом таким свойством, чтобы где-то обнаружить отрезок BH, потому что в данный момент совершенно неясно, что с ним делать, а только с ним что-то делать и остается, так как оба отрезка: OH и OB, как-то с ним связаны. Так какое доп. построение здесь может зарешать?
Подсказка 3
Оп-па, можно отразить точку О относительно AC (пусть образ точки O- это О₁). Тогда OO₁=HB, по свойству ортоцентра, при этом, очевидно, HBOO₁ — параллелограмм. А значит, OH можно легко выразить через OB и OO₁. Осталось выразить, в силу того, что СOAO₁ — параллелограмм, сумму векторов OA+OC, после чего увидеть, что задача решена!
Иными словами, нас просят доказать векторное равенство
Пусть симметрична относительно середины тогда
По свойству ортоцентра и значит — параллелограмм, следовательно,
Таким образом,
Ошибка.
Попробуйте повторить позже
Из медиан треугольника составлен треугольник а из медиан треугольника составлен треугольник Докажите, что треугольники и подобны, и найдите коэффициент подобия.
Подсказка 1
Для начала надо построить треугольник A₁B₁C₁. Вы же помните, как выражается вектор медианы через вектора сторон?
Подсказка 2
Если проведена медиана AM₁, то вектор AM₁ равен полусумме векторов AB и AС. Нетрудно увидеть, что сумма векторов AM₁, BN₁ и CK₁ равна 0 (BN₁ и CK₁- векторы оставшихся медиан), а значит из них действительно можно сложить треугольник. Может тогда посмотрим, как выражаются медианы треугольника A₁B₁C₁?
Подсказка 3
Мы знаем, что для векторов нашего треугольника A₁B₁C₁ верны следующие равенства: A₁B₁= AM₁, B₁C₁=BN₁, C₁A₁=CK₁. Тогда вектор медианы A₁M₂ равен полусумме векторов AM₁ и K₁C. Как тогда можно выразить вектор A₁M₂ через вектора треугольника ABC?
Подсказка 4
A₁M₂=(AM₁+M₁C)/2=(AB+AC+BC+AC)/4=3*AC/4. Осталось аналогично выразить остальные векторы медиан B₁N₂ и C₁K₂ и завершить решение!
Первое решение.
Пусть медианы будут и аналогично для (). Тогда из имеем
Заметим, что сумма всех векторов равна нулю, поэтому из них можно составить треугольник. Это важно, поскольку тогда мы можем использовать их в качестве сторон (). Далее из треугольника получим
Здесь мы воспользовались тем, что Повторяя аналогичные рассуждения для остальных сторон, получаем подобие с коэффициентом
Второе решение.
Если стороны треугольника равны то квадраты длин медиан выражаются по формулам
Тогда у треугольника квадраты длин сторон, как медианы треугольника выражаются по формулам
Далее аналогично считаются длины оставшихся двух сторон. В итоге у треугольника стороны равны поэтому он подобен исходному треугольнику со сторонами коэффициент подобия равен
Ошибка.
Попробуйте повторить позже
На стороне и диагонали квадрата отмечены точки и соответственно так, что
а) Докажите, что точки лежат на одной окружности.
б) Найдите расстояние от точки пересечения диагоналей четырёхугольника до прямой , если сторона квадрата равна
Первое решение.
а) Так как по условию то
По условию Отметим точку — центр квадрата. Тогда Поэтому
В силу того, что углы от 0 до 180 градусов невключительно, из следует дающее вписанность.
б) Пусть точка — точка пересечения и . Из вписанности имеем так что искомое расстояние
Из подобия треугольников и
Из условия задачи
В итоге получаем
Второе решение.
a) Заметим, что если ввести систему координат с центром в точке , а ось пустить по лучу , ось - по , а , то мы легко найдем координаты всех точек, что нам даны. Тогда мы можем найти центр описанной окружности прямоугольного треугольника - середину гипотенузы, тогда . Находим расстояние между точками , равное , и убеждаемся, что оно равно , то есть действительно лежат на одной окружности.
б) В нашей системе координат прямая задаётся уравнением , а прямая : , откуда сразу находим, что точка пересечения и имеет координаты . Так как прямая задаётся (по двум точкам) уравнением: , вспоминаем формулу расстояния от точки до прямой и записываем ответ, подставляя
Ошибка.
Попробуйте повторить позже
В выпуклом 12-угольнике все углы равны. Известно, что длины каких-то десяти его сторон равны 1, а длина ещё одной равна 2. Чему может быть равна площадь этого 12-угольника?
Источники:
Подсказка 1
Пусть длины сторон это 10 единиц, 2 и x. Очень хочется найти x... Попробуем рассмотреть векторы, соответствующие сторонам и поработать с ними.
Подсказка 2
Т.к. мы всё-таки хотим использовать длины сторон, то работать будем не с самими векторами, а с коллинеарными им единичными. Т.к. мы знаем, что они образуют многоугольник, то мы можем записать уравнение на них. А как быть с равными углами? Что можно сказать о взаимно расположении некоторых единичных векторов?
Подсказка 3
Заметим, что каждый угол равен 150. Тогда мы можем сказать, какие стороны многоугольника параллельны. Теперь мы можем записать условия на пары единичных векторов.
Подсказка 4
Знаем, что сумма единичных векторов, где один идёт с коэффициентов 2, а другой - с x равна 0. Также сумма единичных векторов, соответствующим противоположным сторонам тоже равна 0. Как найти x?
Подсказка 5
Чему равна сумма единичных векторов без дополнительных коэффициентов?
Подсказка 6
Их сумма равна 0! Теперь-то мы можем найти x) Осталось лишь найти площадь многоугольника, в котором мы знаем взаимное расположение всех сторон.
Рассмотрим 12-угольник удовлетворяющий условию задачи. У него десять сторон длины 1 и одна сторона длины 2. Обозначим через длину оставшейся стороны. Рассмотрим векторы а также коллинеарные им единичные векторы Тогда для некоторых и имеет место равенство
Помимо того,
поэтому
Вычитая второе из полученных равенств из первого, получаем
Это возможно лишь в случае, если и Значит, в исходном 12-угольнике есть пара параллельных сторон длины 2.
В силу равенства всех углов и соответствующих сторон этот 12-угольник имеет ось симметрии:
Чтобы найти площадь, разобьём его на 4 трапеции и прямоугольник. Находим , поэтому искомая площадь равна
Ошибка.
Попробуйте повторить позже
На каждой из сторон параллелограмма выбрано по произвольной точке. Точки на соседних сторонах параллелограмма соединены отрезками прямых. В результате от параллелограмма оказываются отсеченными четыре треугольника. Вокруг каждого из этих треугольников описана окружность. Докажите, что центры этих окружностей являются вершинами некоторого параллелограмма.
Источники:
Подсказка 1
Взглянув на условие, кажется, что надо доказать что-то страшное и непонятно, как это делать. Но давайте вспомним, какие в принципе у нас есть способы решения задач по планиметрии? Углы считать мы не пойдём, в лоб доказывать равенство сторон тоже. Как можно сделать это хитрее?
Изобразим окружности и их центры, которые обозначим Рассмотрим векторы и
Поскольку центры описанных окружностей лежат на пересечении серединных перпендикуляров, проекции указанных векторов на стороны исходного параллелограмма будут равны половине этих сторон.
Таким образом, если ввести две оси: одну параллельно стороне а другую параллельно стороне то каждая пара рассматриваемых векторов будет иметь одинаковые проекции на каждую из введенных осей. Отсюда следует попарное равенство самих векторов.
Ошибка.
Попробуйте повторить позже
В треугольнике длины сторон равны , и . Найдите площадь фигуры, состоящей из тех и только тех точек внутри треугольника , для которых выполняется условие
Подсказка 1
Расстояния между точками удобно считать, когда есть система координат. Как было бы удобно расположить наш треугольник в декартовой системе координат?
Подсказка 2
Заметим, что высота, проведенная к стороне длины 4, равна целочисленному числу, поэтому удобно ввести систему координат так, чтобы Оу было вдоль этой высоты, а Ох — вдоль упомянутой стороны треугольника. Тогда координаты вершин треугольника принимают целочисленные значения.
Подсказка 3
Пусть (x; y) — координаты X. Тогда выражение XA² + XB² + XC² можно представить как сумму двух квадратов с некоторыми коэффициентами, что очень напоминает уравнение окружности с центром в (x; y). А так как нам дано неравенство, то наша фигура в X — это круг! Останется лишь показать, что все его точки лежат внутри △ABC.
Первое решение. Обозначим .
Докажем утверждение, известное как теорема Лейбница в геометрии. Пусть - точка пересечения медиан треугольника . Представим
тогда
Поскольку центр тяжести треугольника , то
и
С учётом доказанной выше теоремы задача эквивалентна
то есть неравенство сводится к
Итак, геометрическим местом точек , удовлетворяющих поставленному условию, является круг радиуса с центром в точке пересечения медиан треугольника .
Этот круг принадлежит треугольнику, если его радиус не больше, чем одна треть наименьшей из высот :
Значит, при выполнении условия
искомая площадь равна . По формуле Герона найдем площадь треугольника:
Вычислим
Поскольку , условие выполняется:
Значит, ответ: .
Второе решение. Высота треугольника, проведенная к стороне длины , равна . Основание высоты делит эту сторону на отрезки, равные и . Введем систему координат так, как показано на рисунке. Тогда .
Перепишем неравенство так:
Оно определяет круг радиуса с центром в точке . Покажем, что все точки этого круга принадлежат треугольнику . Для этого найдем расстояния от точки до сторон треугольника. Уравнение стороны , расстояние до неё равно . Уравнение стороны , расстояние . И расстояние от точки до стороны равно, очевидно, . Наименышее из расстояний , тем не менее, больше, чем радиус круга . Поэтому весь круг и является той фигурой, площадь которой требуется найти, откуда .
Ошибка.
Попробуйте повторить позже
Существует ли такой выпуклый четырёхугольник, у которого длины всех сторон и диагоналей в некотором порядке образуют геометрическую прогрессию?
Пусть — некоторое положительное число. Треугольник со сторонами и существует тогда и только тогда, когда выполняются три неравенства:
Первое из этих неравенств выполнено при , второе — при всех положительных , третье — при , где — так называемое «золотое сечение», положительный корень квадратного уравнения . Следовательно, треугольник с такими сторонами существует при . При таких же существует треугольник со сторонами и . Пусть далее значение принадлежит отрезку .
В декартовой системе координат отметим точки , , точку в полуплоскости , для которой и , а также точку в полуплоскости , для которой и
По доказанному выше такие точки существуют для всех . Кроме того, треугольники и подобны по трем пропорциональным сторонам. Значит, и . Поскольку , угол , лежащий напротив стороны а треугольника , меньше . Отсюда получаем, что
Следовательно, — выпуклый четырехугольник при всех указанных значениях .
Пусть точка имеет координаты , тогда и . Из этих уравнений получаем
Эти выражения непрерывно зависят от на отрезке . Аналогично доказывается, что координаты точки также непрерывно зависят от на этом отрезке. Следовательно, длина диагонали четырехугольника , равная , также непрерывно зависит от на этом отрезке.
При треугольники и являются равносторонними со стороной 1 , поэтому . При получаем
Значит, непрерывная на отрезке функция принимает в концах этого отрезка значения разных знаков:
Поэтому найдется такое значение , при котором и, следовательно,
Ошибка.
Попробуйте повторить позже
Математический бильярд имеет форму параллелограмма . На сторонах и соответственной расположены точки и так, что , а . Шар находится в точке пересечения прямых и . Известно, что шар, направленный в точку борта , отразившись от четырех различных бортов, вернулся в точку и, продолжив свое движение, повторил свою предыдущую траекторию. Найти величину отношения : , если известно, что траектория шара — выпуклый четырехугольник.
Рассмотрим траекторию движения, следуя правилу "угол падения равен углу отражения". Пусть эти углы равны для случаев отражения от бортов , , , соответственно. Тогда выполняются равенства и из тех соображений, что противоположные углы параллелограмма равны. Из этих равенств вытекает, что и , из чего, в свою очередь, следует, что – прямоугольник.
Введём аффинную систему координат, в которой , , , и выпишем уравнения прямых и . Поскольку и , прямые и задаются уравнениями:
соответственно, а их точкой пересечения будет
Теперь отразим прямоугольник зеркально сначала от стороны , затем от стороны, в которую перешла при этом отражении, и далее для двух оставшихся сторон по тому же принципу. Это стандартная процедура "выпрямления"бильярдной траектории, соответствующая равенству угла падения углу отражения.
При таких "зеркальных"отражениях траектория становится отрезком , где - образ точки после серии отражений. Её координаты легко вычислить: после четырёх отражений прямоугольник сохранил ориентацию, и сдвинулся на два размера влево и на два размера вверх. Таким образом, , и прямая имеет угловой коэффициент . Её уравнением будет
и прямую , заданную уравнением , она пересекает в точке с абсциссой . Это значит, что точка , в которую был направлен шар, делит отрезок в отношении .
Ошибка.
Попробуйте повторить позже
Вершины четырехугольника лежат соответственно на сторонах квадрата . Найти наименьший возможный периметр четырехугольника , если см, см и .
Источники:
Подсказка 1
Очень часто, когда просят найти наименьший периметр, помогает сводить задачу к неравенству ломаной. Т.е. все нужные нам отрезки "сложить" в одну ломаную. Каким образом это удобнее всего сделать в нашем случае, учитывая, что у нас квадрат?
Подсказка 2
Квадрат удобно отражать и переносить. Осталось лишь подумать, относительно каких сторон это делать, чтобы каждый раз у нас появлялся новый кусочек ломаной, которую хотим создать из нужных отрезков.
Первое решение.
(везде ниже единицы измерения — сантиметры)
Из первого условия . Сведём задачу к неравенству ломаной. Для этого отразим квадрат относительно (), а затем относительно (). Легко видеть, что . Далее отразим относительно в точку . Можно считать, что точку мы ранее также отражали относительно , потому . По неравенству ломаной . Отрезок фиксирован, потому достаточно посчитать длину (нетрудно видеть, что минимум достигается подбором точек и ). Используем теорему Пифагора (“проекция на ”) и , откуда .
Второе решение.
Введём систему координат с центром в точке , ось направим вдоль , ось вдоль , возьмём за единицу измерения см. Обозначим координату точки по оси за , координату точки по оси — за . Тогда по теореме Пифагора периметр четырёхугольника равен .
Отметим точки с соответствующими им координатами: . По неравенству ломаной причём равенство достигается при
Итак, минимальный периметр равен
см
Ошибка.
Попробуйте повторить позже
Хорды и окружности с центром пересекаются в точке Пусть и — центры описанных окружностей треугольников и соответственно. Докажите, что
Рассмотрим проекции и векторов и на хорду — середина хорды , поэтому
и — середины хорд и , поэтому
Таким образом, .
Аналогично равны проекции векторов и на хорду . Но вектор полностью определяется своими проекииями на две непараллельные прямые. Поэтому