Тема Векторы и координаты в планиметрии

Введение векторов или координат в планиметрии

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела векторы и координаты в планиметрии
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#76173

Дед Мороз наколдовал на серединах сторон треугольника ABC  шестиконечные снежинки, как показано на рисунке:

PIC

(вершина треугольника и середина стороны треугольника берутся концами стороны соответствующего правильного шестиугольника)

Докажите, что на полученном новогоднем чуде точки пересечения медиан треугольников ABC  и XY Z  совпадают.

Показать доказательство

Пусть O  — произвольная точка плоскости.

Про точку M  пересечения медиан треугольника ABC  известно, что:

 −−→   −→  −−→   −−→
3OM = OA +OB + OC

(это характеристическое свойство следует из того, что точка пересечения медиан является центром масс −M−A→ +−M−B→ +−M−C→ = −→0  )

А требуется доказать, что M  является ещё и точкой пересечения медиан треугольника XY Z  , то есть:

−−→   −−→  −−→   −→
3OM  = OX +OY + OZ

Левые части полученных двух векторных равенств совпадают, поэтому надо доказать про правые, что разность правых частей в этих равенствах равна нулевому вектору, то есть (преобразуем по правилу вычитания векторов):

−−A→X +−B→Z + −−C→Y = −→0

Возьмём серединный треугольник A0B0C0  и повернём его вокруг точки M  на 60∘ . Получим треугольник A1B1C1  такой, что

A1B1 ∥ AX, B1C1 ∥BZ, C1A1 ∥CY

К тому же,

A1B1 =A0B0 = AB∕2= AX,B1C1 =B0C0 =BC ∕2= BZ,C1A1 = C0A0 = CA∕2 =CY

Значит,

−−→   −−−→ −→   −−−→  −−→  −−−→
AX = B1A1,BZ = B1C1,CY =C1A1

Но тогда получаем требуемое:

−−A→X +−B→Z + −−C→Y = −−B−1→A1+ −−B−1→C1+ −−C−1A→1 = −→0

Ошибка.
Попробуйте повторить позже

Задача 2#85562

По плоскости ползут три улитки. Каждая улитка движется со своей скоростью прямолинейно и равномерно. Известно, что в некоторые три момента времени все улитки оказывались на одной прямой. Могут ли улитки в какой-то момент времени оказаться в вершинах правильного треугольника?

Источники: Курчатов - 2024, 11.4 (см. olimpiadakurchatov.ru)

Подсказки к задаче

Подсказка 1

Как в геометрии, так и в других разделах математики, зачастую бывает удобно зафиксировать задачу набором переменных. Если мы хотим зафиксировать задачу здесь, то самым банальным набором будет функция движения каждой улитки. Пусть (x_i(t), y_i(t)) - положение улитки относительно времени. Какое тогда условие, при наличии направляющих векторов можно наложить на их координаты, если в некоторый момент времени эти три улитки были

Подсказка 2

Верно, что (x_2(t) - x_1(t))(y_3(t) - y_1(t)) = (x_3(t) - x_1(t))(y_2(t) - y_1(t)). Просто записали векторное произведение векторов от первой ко второй улитке и от первой к третьей. Что теперь можно понять, если у нас нашлось 3 значения таких t(то есть, три раза был момент, когда они все на 1 прямой)? А если подумать какой степени каждая из зависимостей x_i, y_i относительно t?

Подсказка 3

Зависимости x_i, y_i - линейный зависимости(так как каждая улитка движется по линии), а значит, уравнение выше - не выше второй степени. Однако, у него есть три различных корня. Что это значит тогда? Когда такое может быть?

Показать ответ и решение

Введем декартову систему координат, и пусть (x (t);y(t)),i= 1,2,3
  i   i  - координаты i  -й улитки в момент времени t  . Поскольку улитки движутся прямолинейно и равномерно, то xi(t)  и yi(t)  - линейные функции от времени t  . Рассмотрим векторы

¯a(t)= (x (t)− x(t);y (t)− y (t)),
      2     1   2    1
¯b(t)=(x3(t)− x1(t);y3(t)− y1(t)),

направленные от первой улитки ко второй и третьей соответственно. Тогда условие принадлежности трех улиток одной прямой равносильно коллинеарности векторов ¯a(t)  и ¯
b(t)  .

Это в свою очередь равносильно пропорциональности координат этих векторов:

(x2(t)− x1(t))(y3(t)− y1(t))= (x3(t)− x1(t))(y2(t)− y1(t)).

Заметим, что это равенство представляет собой уравнение на переменную t  степени не выше 2. Нам известно, что у этого уравнения есть три различных корня. Но тогда это уравнение имеет тривиальный вид 0 =0  , поскольку в противном случае у него не может быть больше двух корней. Значит, это уравнение справедливо при любом t  , и улитки всегда находятся на одной прямой и не могут оказаться в вершинах ни одного треугольника.

Ответ: нет

Ошибка.
Попробуйте повторить позже

Задача 3#87529

На каждой из двух прямолинейных линий электропередач установлены обслуживающие подстанции. На линии А — через каждые m  км, на линии В — через каждые q  км. Если занумеровать их подряд вдоль каждой линии, то расстояния между подстанциями A1  и B1  равно   √-
15 2  км, между A3  и B3  равно  √--
5 34  км, между A4  и B4  равно   √--
15 10  км. Определите, параллельны ли данные линии? Если да, то найдите расстояние между ними. Если нет, то найдите расстояние от подстанции A1  до точки их пересечения.

Источники: Надежда энергетики - 2024, 11.2 (см. www.energy-hope.ru)

Подсказки к задаче

Подсказка 1

Как можно записать условие более ёмко? Можно ввести координаты.

Подсказка 2

Мы можем составить уравнение квадрата расстояния от Aₙ до Bₙ. Как оно может выглядеть?

Подсказка 3

Координаты подстанций будут линейно изменяться. Тогда расстояние можно представить как многочлен второй степени.

Подсказка 4

У нас есть 3 уравнения и 3 неизвестных, можем найти все коэффициенты многочлена. Как понять, будут ли линии пересекаться?

Подсказка 5

Значение многочлена всегда больше 0, так как дискриминант меньше 0. Тогда линии параллельны, а квадрат расстояния между ними равен минимальному значению многочлена. Его можно найти через вершину.

Показать ответ и решение

Если ввести декартову систему координат с началом в точке A
  1  и одной из осей, направленной вдоль линии A  (можно и иначе), то координаты всех подстанций будут изменяться линейным образом, следовательно, квадраты расстояний AkBk  будут являться значениями некоторого многочлена второй степени        2
P(s)= as + bs+ c  . Найдём его. Будем измерять s  в условных единицах длины, так что каждая следующая единица соответствует следующей паре подстанций. Тогда

            2
P (0)= c= A1B1 = 9⋅50

                   2
P (2)= 4a+ 2b+ c= A3B3 = 17⋅50

                   2
P (3)= 9a+ 3b+ c= A4B4 = 45⋅50

Для простоты расчетов уменьшим все правые части в 50  раз и из полученной линейной системы найдём

a= 8,b =− 12,c= 9.

Следовательно, искомый многочлен имеет вид

P(s)= 50(8s2− 12s+ 9)

Его дискриминант отрицателен, P(s)  нигде не обращается в ноль (и всюду положителен). Следовательно, линии не пересекаются. Квадрат расстояния между ними равен минимальному значению P (s)  , которое достигается при s =s0 = 34  и равно 50⋅ 92 = 225  . А само расстояние равно 15.

Ответ:

Линии параллельны, расстояние между ними равно 15  км.

Ошибка.
Попробуйте повторить позже

Задача 4#67114

В треугольнике ABC  точка O  — центр описанной окружности, точка H  — ортоцентр. Отрезки OA,OB  и OC  параллельно перенесли и последовательно приставили друг другу. Получилась ломаная. Докажите, что отрезок, соединяющий концы ломаной, равен и параллелен OH.

Подсказки к задаче

Подсказка 1

Отрезки, которые друг от друга откладывают, и нам важно только расстояние между началом и концом… Да это же задача на векторы! То есть нас просят доказать векторное равенство OH=OA+OB+OC (всё в векторах). Сразу такое доказывать страшно и не понятно как. Может быть преобразовать два каких-то слагаемых из этой суммы, с помощью дополнительного построения?

Подсказка 2

Если у нас есть ортоцентр, то надо пользоваться его свойством. При этом таким свойством, чтобы где-то обнаружить отрезок BH, потому что в данный момент совершенно неясно, что с ним делать, а только с ним что-то делать и остается, так как оба отрезка: OH и OB, как-то с ним связаны. Так какое доп. построение здесь может зарешать?

Подсказка 3

Оп-па, можно отразить точку О относительно AC (пусть образ точки O- это О₁). Тогда OO₁=HB, по свойству ортоцентра, при этом, очевидно, HBOO₁ — параллелограмм. А значит, OH можно легко выразить через OB и OO₁. Осталось выразить, в силу того, что СOAO₁ — параллелограмм, сумму векторов OA+OC, после чего увидеть, что задача решена!

Показать доказательство

Иными словами, нас просят доказать векторное равенство

−−→  −→   −−→   −−→
OH =OA + OB + OC(Формула-Гамильтона)

PIC

Пусть O1  симметрична O  относительно середины AC,  тогда

−O→A +−O−→C = −O−O→1.

По свойству ортоцентра BH = OO1  и BH ∥ OO1,  значит HBOO1  — параллелограмм, следовательно,

−−→   −−→   −−→
OB + OO1 = OH

Таким образом,

−→   −−→  −−→   −−→
OA + OB +OC = OH

Ошибка.
Попробуйте повторить позже

Задача 5#68554

Из медиан треугольника ABC  составлен треугольник A B C ,
 1 1 1  а из медиан треугольника A B C
 1 1 1  составлен треугольник A B C .
 2 2 2  Докажите, что треугольники ABC  и A2B2C2  подобны, и найдите коэффициент подобия.

Подсказки к задаче

Подсказка 1

Для начала надо построить треугольник A₁B₁C₁. Вы же помните, как выражается вектор медианы через вектора сторон?

Подсказка 2

Если проведена медиана AM₁, то вектор AM₁ равен полусумме векторов AB и AС. Нетрудно увидеть, что сумма векторов AM₁, BN₁ и CK₁ равна 0 (BN₁ и CK₁- векторы оставшихся медиан), а значит из них действительно можно сложить треугольник. Может тогда посмотрим, как выражаются медианы треугольника A₁B₁C₁?

Подсказка 3

Мы знаем, что для векторов нашего треугольника A₁B₁C₁ верны следующие равенства: A₁B₁= AM₁, B₁C₁=BN₁, C₁A₁=CK₁. Тогда вектор медианы A₁M₂ равен полусумме векторов AM₁ и K₁C. Как тогда можно выразить вектор A₁M₂ через вектора треугольника ABC?

Подсказка 4

A₁M₂=(AM₁+M₁C)/2=(AB+AC+BC+AC)/4=3*AC/4. Осталось аналогично выразить остальные векторы медиан B₁N₂ и C₁K₂ и завершить решение!

Показать ответ и решение

Первое решение.

Пусть медианы △ABC  будут    ′
AA ,...  и аналогично для △A1B1C1  (   ′′
A1A ,...  ). Тогда из △ABC  имеем

     −→   −→         −→   −−→         −−→   −→
−A−→A ′ =AB-+-AC , −B−B→′ = BA+-BC-, −C−C→′ = CB+-CA
         2              2              2

Заметим, что сумма всех векторов равна нулю, поэтому из них можно составить треугольник. Это важно, поскольку тогда мы можем использовать их в качестве сторон A1B1C1  (−A−→A′ → −A−1−B→1,−B−B→′ → −B−−1→C1,−C−C→′ → −C−1−→A1  ). Далее из треугольника △A1B1C1  получим

−−−→   −−−→  −−−→   −→  −→   −−→  −→    −→
A1A′′= A1B1-+A1C1 = AB-+AC-+-BC-+AC- = 3AC--
           2               4           4

Здесь мы воспользовались тем, что −A→B + −−B→C +−C→A = −→0 .  Повторяя аналогичные рассуждения для остальных сторон, получаем подобие с коэффициентом 34.

Второе решение.

Если стороны треугольника равны a,b,c,  то квадраты длин медиан выражаются по формулам

m2 = 2b2+-2c2-− a2
 a       4

 2   2c2+-2a2− b2
mb =     4

 2   2a2+ 2b2− c2
mc = ----4------

Тогда у треугольника A2B2C2  квадраты длин сторон, как медианы треугольника A1B1C1,  выражаются по формулам

   2    2   2
2m-b +2m-c − m-a=
      4

= -1⋅(2(2b2+ 2c2− a2)+2(2c2+ 2a2− b2)− (2a2+ 2b2− c2))
  16

  -1 (  2)  ( 3c)2
= 16 ⋅9c  =  4

Далее аналогично считаются длины оставшихся двух сторон. В итоге у треугольника A2B2C2  стороны равны 34c,34b,34a,  поэтому он подобен исходному треугольнику со сторонами a,b,c,  коэффициент подобия равен 3.
4

Ответ:

 3
4

Ошибка.
Попробуйте повторить позже

Задача 6#45004

На стороне AB  и диагонали AC  квадрата ABCD  отмечены точки M  и N  соответственно так, что AM :MB  = 1:4,AN :NC = 3:2.

а) Докажите, что точки A,M,N,D  лежат на одной окружности.

б) Найдите расстояние от точки пересечения диагоналей четырёхугольника AMND  до прямой MN  , если сторона квадрата равна 45.

Показать ответ и решение

Первое решение.

PIC

а) Так как по условию AM = 15AB,  то

tg∠AMD  = 5

По условию AN = 35AC.  Отметим точку O  — центр квадрата. Тогда AO = 12AC = OD.  Поэтому

           1
tg ∠AND = 3-21-= 6-1- =5
         5 −2   5 − 1

В силу того, что углы от 0 до 180 градусов невключительно, из tg∠AMD  =tg∠AND  следует ∠AMD  = ∠AND,  дающее вписанность.

б) Пусть точка S  — точка пересечения AM  и ND  . Из вписанности имеем ∠ANM  =∠ADM,  так что искомое расстояние

                                        AM
SH = SN sin∠ANM  =SN sin∠ADM  = (AN − AS )⋅MD-

Из подобия треугольников AMS  и SCD

                               1       √ -
AS :SC = AM :CD = 1:5 =⇒   AS = 6AC = 7,5 2

Из условия задачи

     3       √-
AN = 5AC = 27 2

                  ∘------   √ --
AM = 15AB = 9,MD  =  92+ 452 =9  26

В итоге получаем

                       √ --
SH = 19,5√2-√1-= -3√9- = 3-13
            26  2 13    2

Второе решение.

PIC

a) Заметим, что если ввести систему координат с центром в точке C  , а ось x  пустить по лучу CB  , ось y  - по CD  , а |CD|= 5t  , то мы легко найдем координаты всех точек, что нам даны. Тогда мы можем найти центр описанной окружности O  прямоугольного треугольника AMD  - середину гипотенузы, тогда O (5t2 ;92t )  . Находим расстояние между точками O,N  , равное ∘ -----------------
  (5t2-− 2t)2+ (92t− 2t)2 , и убеждаемся, что оно равно 12|AM |= 12∘(5t)2+-t2  , то есть A,M,N,D  действительно лежат на одной окружности.

б) В нашей системе координат прямая ND  задаётся уравнением x= y  , а прямая AM  : y = 5t− x5  , откуда сразу находим, что точка S  пересечения AM  и ND  имеет координаты S(25t,25t)
   6  6  . Так как прямая NM  задаётся (по двум точкам) уравнением: 2x− 3y+ 2t =0  , вспоминаем формулу расстояния от точки до прямой и записываем ответ, подставляя 5t= 45 =⇒   t= 9  =⇒

         |2 ⋅ 25t− 325t+ 2t| 3√13-
ρ(S,NM )= ---6√22+632----= --2-
Ответ:

 3√13
  2

Ошибка.
Попробуйте повторить позже

Задача 7#72976

В выпуклом 12-угольнике все углы равны. Известно, что длины каких-то десяти его сторон равны 1, а длина ещё одной равна 2. Чему может быть равна площадь этого 12-угольника?

Источники: ММО-2022, 11.3 (см. mmo.mccme.ru)

Подсказки к задаче

Подсказка 1

Пусть длины сторон это 10 единиц, 2 и x. Очень хочется найти x... Попробуем рассмотреть векторы, соответствующие сторонам и поработать с ними.

Подсказка 2

Т.к. мы всё-таки хотим использовать длины сторон, то работать будем не с самими векторами, а с коллинеарными им единичными. Т.к. мы знаем, что они образуют многоугольник, то мы можем записать уравнение на них. А как быть с равными углами? Что можно сказать о взаимно расположении некоторых единичных векторов?

Подсказка 3

Заметим, что каждый угол равен 150. Тогда мы можем сказать, какие стороны многоугольника параллельны. Теперь мы можем записать условия на пары единичных векторов.

Подсказка 4

Знаем, что сумма единичных векторов, где один идёт с коэффициентов 2, а другой - с x равна 0. Также сумма единичных векторов, соответствующим противоположным сторонам тоже равна 0. Как найти x?

Подсказка 5

Чему равна сумма единичных векторов без дополнительных коэффициентов?

Подсказка 6

Их сумма равна 0! Теперь-то мы можем найти x) Осталось лишь найти площадь многоугольника, в котором мы знаем взаимное расположение всех сторон.

Показать ответ и решение

Рассмотрим 12-угольник A A ...A ,
 1 2    12  удовлетворяющий условию задачи. У него десять сторон длины 1 и одна сторона длины 2. Обозначим через x  длину оставшейся стороны. Рассмотрим векторы −−−→ −−−→    −−−−→
A1A2,A2A3,...,A12A1,  а также коллинеарные им единичные векторы ⃗e1,⃗e2,...,⃗e12.  Тогда для некоторых i  и j  имеет место равенство

                            −→
⃗e1 +...+ 2⃗ei+...+ x⃗ej +...+⃗e12 = 0

Помимо того,

                           −→
⃗e1+ ⃗e7 =⃗e2+ ⃗e8 = ...= ⃗e6 +⃗e12 = 0,

поэтому

               −→
⃗e1+⃗e2+ ...+ ⃗e12 = 0

Вычитая второе из полученных равенств из первого, получаем

⃗ei+ (x− 1)⃗ej = −→0

Это возможно лишь в случае, если ⃗ei = −⃗ej  и x = 2.  Значит, в исходном 12-угольнике есть пара параллельных сторон длины 2.

В силу равенства всех углов и соответствующих сторон этот 12-угольник имеет ось симметрии:

PIC

Чтобы найти площадь, разобьём его на 4 трапеции и прямоугольник. Находим A3A12 = A6A9 = 1+ √3,A4A11 =A5A10 =  = 2+√3-  , поэтому искомая площадь равна

         √-   √3⋅(2+-√3+-1+-√3)  1+-√3+-1      √-
S = 2⋅(2+  3)+         2        +    2    = 8+ 4 3
Ответ:

 8+ 4√3

Ошибка.
Попробуйте повторить позже

Задача 8#76463

На каждой из сторон параллелограмма выбрано по произвольной точке. Точки на соседних сторонах параллелограмма соединены отрезками прямых. В результате от параллелограмма оказываются отсеченными четыре треугольника. Вокруг каждого из этих треугольников описана окружность. Докажите, что центры этих окружностей являются вершинами некоторого параллелограмма.

Источники: Надежда энергетики-2022, 11.4 (см. www.energy-hope.ru)

Подсказки к задаче

Подсказка 1

Взглянув на условие, кажется, что надо доказать что-то страшное и непонятно, как это делать. Но давайте вспомним, какие в принципе у нас есть способы решения задач по планиметрии? Углы считать мы не пойдём, в лоб доказывать равенство сторон тоже. Как можно сделать это хитрее?

Показать доказательство

Изобразим окружности и их центры, которые обозначим O ,...,O .
  1    4  Рассмотрим векторы O O ,O O
 1 2  4 3  и O O ,O O .
 1 4  2 3

PIC

Поскольку центры описанных окружностей лежат на пересечении серединных перпендикуляров, проекции указанных векторов на стороны исходного параллелограмма будут равны половине этих сторон.

Таким образом, если ввести две оси: одну параллельно стороне AB,  а другую параллельно стороне AD,  то каждая пара рассматриваемых векторов будет иметь одинаковые проекции на каждую из введенных осей. Отсюда следует попарное равенство самих векторов.

Ошибка.
Попробуйте повторить позже

Задача 9#34679

В треугольнике ABC  длины сторон равны 4  , 5  и √17-  . Найдите площадь фигуры, состоящей из тех и только тех точек X  внутри треугольника ABC  , для которых выполняется условие    2    2     2
XA  +XB  + XC  ≤21

Источники: ОММО - 2021, номер 4 (см. olympiads.mccme.ru)

Подсказки к задаче

Подсказка 1

Расстояния между точками удобно считать, когда есть система координат. Как было бы удобно расположить наш треугольник в декартовой системе координат?

Подсказка 2

Заметим, что высота, проведенная к стороне длины 4, равна целочисленному числу, поэтому удобно ввести систему координат так, чтобы Оу было вдоль этой высоты, а Ох — вдоль упомянутой стороны треугольника. Тогда координаты вершин треугольника принимают целочисленные значения.

Подсказка 3

Пусть (x; y) — координаты X. Тогда выражение XA² + XB² + XC² можно представить как сумму двух квадратов с некоторыми коэффициентами, что очень напоминает уравнение окружности с центром в (x; y). А так как нам дано неравенство, то наша фигура в X — это круг! Останется лишь показать, что все его точки лежат внутри △ABC.

Показать ответ и решение

Первое решение. Обозначим BC = a,AC = b,AB = c,ρ2 =21  .

Докажем утверждение, известное как теорема Лейбница в геометрии. Пусть G  - точка пересечения медиан треугольника ABC  . Представим

−−→   −→   −−→ −−→   −−→   −−→ −−→   −−→  −−→
XA  =GA − GX,XB = GB − GX,XC = GC −GX,

тогда

   2    2     2    2     2    2    −−→  −→   −−→  −−→        2
XA  + XB  +XC  = GA + GB  +GC  − 2⋅GX ⋅(GA + GB +GC )+3⋅GX

Поскольку G− центр тяжести треугольника ABC  , то

−G→A +−G−→B + −−G→C = 0,

и

GA2+ GB2 +GC2 = 4(m2a +m2b + m2c)= 1(a2+ b2+ c2)
                9               3

С учётом доказанной выше теоремы задача эквивалентна

1(a2+ b2 +c2)+3 ⋅GX2 ≤ ρ2,
3

то есть неравенство сводится к

GX2 ≤ 1⋅(3ρ2− a2− b2 − c2).
      9

Итак, геометрическим местом точек X  , удовлетворяющих поставленному условию, является круг радиуса 1∘3ρ2−-a2−-b2−-c2
3  с центром в точке пересечения медиан треугольника ABC  .

Этот круг принадлежит треугольнику, если его радиус не больше, чем одна треть наименьшей из высот △ABC  :

1∘--2--2---2--2-  -2S△ABC---
3 3ρ − a − b − c ≤ 3max{a,b,c}.

Значит, при выполнении условия

2   2  2       2   2  2     (         )2
a-+b-+-c-< ρ2 ≤ a-+-b-+-c + 4 ⋅-S△ABC--
   3              3      3   max{a,b,c}

искомая площадь равна S = π ⋅(3ρ2− a2− b2− c2)
   9 . По формуле Герона найдем площадь треугольника:

        1∘----√------√---√------√------
S△ABC = 4 (9+  17)(9−  17)( 17+ 1)( 17− 1)=8

Вычислим

a2 +b2+ c2   58  S△ABC     8
---3-----= 3-,max{a,b,c}-= 5

Поскольку ρ2 = 21  , условие (∗)  выполняется:

58 <21≤ 58+ 256= 1706
 3       3   75   75

Значит, ответ: S = π9 ⋅(63− 58)= 5π9  .

Второе решение. Высота треугольника, проведенная к стороне длины 4  , равна 4  . Основание высоты делит эту сторону на отрезки, равные 1  и 3  . Введем систему координат так, как показано на рисунке. Тогда A(−1;0),B(0;4),C(3;0)  .

PIC

  2     2    2       2   2  2       2       2  2    2    2
XA + XB  +XC  = (x+ 1) + y + x +(y− 4) + (x− 3) + y =3x + 3y − 4x− 8y+ 26 ≤21.  Перепишем неравенство так:

(     )2  (    )2
 x − 2  +  y− 4  ≤ 5.
     3        3    9

Оно определяет круг радиуса R = √35  с центром в точке K (2∕3;4∕3)  . Покажем, что все точки этого круга принадлежат треугольнику ABC  . Для этого найдем расстояния от точки K  до сторон треугольника. Уравнение стороны AB :4x− y+ 4= 0  , расстояние до неё равно     |4⋅√(2∕3)−4∕3+4|
d1 =   42+(−1)2  =    -1√6-
= 3 17  . Уравнение стороны BC :4x+3y− 12= 0  , расстояние     |4⋅(2∕3√)+3⋅(4∕3)−12|  16
d2 =      42+32    = 15  . И расстояние от точки K  до стороны AC  равно, очевидно, d3 = 43  . Наименышее из расстояний d2  , тем не менее, больше, чем радиус круга        √-
R : 1615-> 35  . Поэтому весь круг и является той фигурой, площадь которой требуется найти, откуда S =πR2 = 59π  .

Ответ:

 5π
 9

Ошибка.
Попробуйте повторить позже

Задача 10#92175

Существует ли такой выпуклый четырёхугольник, у которого длины всех сторон и диагоналей в некотором порядке образуют геометрическую прогрессию?

Источники: ММО - 2021, второй день, 11.4 (см. mmo.mccme.ru)

Показать ответ и решение

Пусть a  — некоторое положительное число. Треугольник со сторонами 1,a  и a2  существует тогда и только тогда, когда выполняются три неравенства:

      2         2   2
1< a+ a,  a< 1+a , a < a+ 1.

Первое из этих неравенств выполнено при a > 1
    φ  , второе — при всех положительных a  , третье — при a< φ  , где φ= 1+√5
    2  — так называемое «золотое сечение», положительный корень квадратного уравнения x2 − x− 1= 0  . Следовательно, треугольник с такими сторонами существует при a∈( 1;φ )
    φ . При таких же a  существует треугольник со сторонами 1, 1
  a  и 1-
a2  . Пусть далее значение a  принадлежит отрезку   √--  (1  )
[1; φ]⊂  φ;φ .

В декартовой системе координат Oxy  отметим точки O(0,0)  , B (1,0)  , точку A  в полуплоскости y > 0  , для которой       2
OA = a  и AB = a  , а также точку C  в полуплоскости y < 0  , для которой       1
OC = a2  и      1
CB = a :

PIC

По доказанному выше такие точки существуют для всех a ∈[1;√ φ]  . Кроме того, треугольники OAB  и OBC  подобны по трем пропорциональным сторонам. Значит, ∠AOB = ∠BOC  и ∠OAB = ∠OBC  . Поскольку 1≤ a≤ a2  , угол AOB  , лежащий напротив стороны а треугольника OAB  , меньше 90∘ . Отсюда получаем, что

                  ∘
∠AOC  =2∠AOB  <180

∠ABC  =∠ABO  +∠OBC  =∠ABO  +∠OAB  <180∘

Следовательно, OABC  — выпуклый четырехугольник при всех указанных значениях a  .

Пусть точка A  имеет координаты (x;y)  , тогда x2+y2 =  = a4  и (x− 1)2+ y2 = a2  . Из этих уравнений получаем

    4   2
x= a-−-a-+-1= f(a)
       2

     --------
y =∘ a4− f2(a)

Эти выражения непрерывно зависят от a  на отрезке [1;√ φ]  . Аналогично доказывается, что координаты точки C  также непрерывно зависят от a  на этом отрезке. Следовательно, длина диагонали AC  четырехугольника OABC  , равная g(a)  , также непрерывно зависит от a  на этом отрезке.

При a= 1  треугольники OAB  и OBC  являются равносторонними со стороной 1 , поэтому g(1)= √3  . При a= √φ-  получаем

 √ --               √ -- -1-  1+-φ   √--3
g( φ)=AC < AB + BC =  φ+ √φ-=  √φ-= ( φ) .

Значит, непрерывная на отрезке   √ --
[1;  φ]  функция g(a)− a3  принимает в концах этого отрезка значения разных знаков:

         √-
g(1)− 13 = 3− 1> 0

g(√φ)− (√φ)3 < 0

Поэтому найдется такое значение      √ --
a ∈(1; φ)  , при котором g(a)− a3 = 0  и, следовательно,

OC = -12,CB = 1,OB =1,AB = a,OA = a2,AC = a3
     a       a
Ответ: да

Ошибка.
Попробуйте повторить позже

Задача 11#76942

Математический бильярд имеет форму параллелограмма ABCD  . На сторонах AD  и CD  соответственной расположены точки E  и   F  так, что AE :ED =1 :2  , а DF :FC =1 :3  . Шар находится в точке M  пересечения прямых BF  и CE  . Известно, что шар, направленный в точку N  борта BC  , отразившись от четырех различных бортов, вернулся в точку M  и, продолжив свое движение, повторил свою предыдущую траекторию. Найти величину отношения BN  : NC  , если известно, что траектория шара — выпуклый четырехугольник.

Показать ответ и решение

Рассмотрим траекторию движения, следуя правилу "угол падения равен углу отражения". Пусть эти углы равны α ,α ,α ,α
 1  2 3  4  для случаев отражения от бортов BC  , AB  , AD  , CD  соответственно. Тогда выполняются равенства α1+ α4 = α2+α3  и α1+ α2 = α3+ α4  из тех соображений, что противоположные углы параллелограмма равны. Из этих равенств вытекает, что α1 = α3  и α2 = α4  , из чего, в свою очередь, следует, что ABCD  – прямоугольник.

PIC

Введём аффинную систему координат, в которой A(0;0)  , D(1;0)  , B(0;1)  , C(1;1)  и выпишем уравнения прямых CE  и BF  . Поскольку E(13;0)  и F(1;14)  , прямые CE  и BF  задаются уравнениями:

y = 3x− 1 и y = − 3x+1
   2   2       4

соответственно, а их точкой пересечения будет M (2;1).
   3 2

Теперь отразим прямоугольник ABCD  зеркально сначала от стороны BC  , затем от стороны, в которую перешла BC  при этом отражении, и далее для двух оставшихся сторон по тому же принципу. Это стандартная процедура "выпрямления"бильярдной траектории, соответствующая равенству угла падения углу отражения.

PIC

При таких "зеркальных"отражениях траектория становится отрезком MM ′ , где M ′ - образ точки M  после серии отражений. Её координаты легко вычислить: после четырёх отражений прямоугольник сохранил ориентацию, и сдвинулся на два размера влево и на два размера вверх. Таким образом, M ′(23 − 2;12 + 2)  , и прямая MM ′ имеет угловой коэффициент − 1  . Её уравнением будет

y =− x+ 7
        6

и прямую BC  , заданную уравнением y = 1  , она пересекает в точке с абсциссой x= 16  . Это значит, что точка N  , в которую был направлен шар, делит отрезок BC  в отношении 1:5  .

Ответ: 1 : 5

Ошибка.
Попробуйте повторить позже

Задача 12#43116

Вершины K,L,M,N  четырехугольника KLMN  лежат соответственно на сторонах AB,BC,CD, DA  квадрата ABCD  . Найти наименьший возможный периметр четырехугольника KLMN  , если AK = 2  см, BK  =4  см и AN =ND  .

Источники: ОММО-2010, номер 7, (см. olympiads.mccme.ru)

Подсказки к задаче

Подсказка 1

Очень часто, когда просят найти наименьший периметр, помогает сводить задачу к неравенству ломаной. Т.е. все нужные нам отрезки "сложить" в одну ломаную. Каким образом это удобнее всего сделать в нашем случае, учитывая, что у нас квадрат?

Подсказка 2

Квадрат удобно отражать и переносить. Осталось лишь подумать, относительно каких сторон это делать, чтобы каждый раз у нас появлялся новый кусочек ломаной, которую хотим создать из нужных отрезков.

Показать ответ и решение

Первое решение.

PIC

(везде ниже единицы измерения — сантиметры)

Из первого условия AB =6  =⇒   AN = ND = 3  . Сведём задачу к неравенству ломаной. Для этого отразим квадрат относительно CD  (A → A′,B → B′ ), а затем относительно BC ′ (D → D ′,A′ → A′′,M → M ′ ). Легко видеть, что LM = LM ′ . Далее отразим N  относительно C  в точку N′ ∈ D′A ′′ . Можно считать, что точку M  мы ранее также отражали относительно C  , потому M ′N ′ =MN  . По неравенству ломаной KN ′ ≤ KL+ LM ′+M ′N′ = PKLMN − NK  . Отрезок NK  =√32-+22 = √13  фиксирован, потому достаточно посчитать длину KN ′ (нетрудно видеть, что минимум достигается подбором точек L  и M  ). Используем теорему Пифагора xKN ′ =6 +3= 9  (“проекция на Ox  ”) и yKN′ = 4+ 6= 10  , откуда KN ′ = √181  .

Второе решение.

Введём систему координат с центром в точке A  , ось Ox  направим вдоль AD  , ось Oy  вдоль AB  , возьмём за единицу измерения    1  см. Обозначим координату точки L  по оси x  за a  , координату точки M  по оси y  — за b  . Тогда по теореме Пифагора периметр четырёхугольника KLMN  равен √a2-+42+ ∘ (6−-a)2+(6−-b)2+ ∘32+-y2+ √32+-22-  .

Отметим точки с соответствующими им координатами: R(a;4),P (6;10− b);Q(9;10)  . По неравенству ломаной AR + RP +PQ ≥ AQ =√92-+102,  причём равенство достигается при x = -6--= 9- =⇒   a= 18,b = 10.
4   10−b   10          5     3

Итак, минимальный периметр равен √92-+102+ √32+-22.

Ответ:

 √13-+√181  см

Ошибка.
Попробуйте повторить позже

Задача 13#97589

Хорды AC  и BD  окружности с центром O  пересекаются в точке K.  Пусть M  и N  — центры описанных окружностей треугольников AKB  и CKD  соответственно. Докажите, что OM = KN.

Показать доказательство

Рассмотрим проекции −M−−−→O
  1 1  и −−K−N→
  1  векторов −M−→O  и −K−→N  на хорду AC.N
    1  — середина хорды KC  , поэтому

−−−→   1−−→
KN1 = 2KC

M1  и O1  — середины хорд AK  и AC  , поэтому

−−−−→  −−→   −−−→   1−→   1−−→   1−−→
M1O1 =AO1 − AM1 = 2AC− 2AK = 2KC

Таким образом, −−−−→  −−−→
M1O1 =KN1  .

Аналогично равны проекции векторов −−M→O  и −−K→N  на хорду BD  . Но вектор полностью определяется своими проекииями на две непараллельные прямые. Поэтому −M−O→ =−K−N→.

Рулетка
Вы можете получить скидку в рулетке!