20.02 Задачи №20 из сборника И.В. Ященко
Ошибка.
Попробуйте повторить позже
Решите уравнение
Источники:
Преобразуем уравнение:
Преобразуем левую часть полученного уравнения, воспользовавшись формулой разности квадратов:
Произведение равно нулю, когда хотя бы один из множителей равен нулю, поэтому полученное уравнение равносильно совокупности:
Критерии оценивания выполнения задания | Баллы |
Обоснованно получен верный ответ | 2 |
Решение доведено до конца, но допущена арифметическая ошибка, с её учётом дальнейшие шаги выполнены верно | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Решите уравнение
Источники:
Преобразуем уравнение:
Преобразуем левую часть полученного уравнения, воспользовавшись формулой разности квадратов:
Произведение равно нулю, когда хотя бы один из множителей равен нулю, поэтому полученное уравнение равносильно совокупности:
Критерии оценивания выполнения задания | Баллы |
Обоснованно получен верный ответ | 2 |
Решение доведено до конца, но допущена арифметическая ошибка, с её учётом дальнейшие шаги выполнены верно | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Решите систему уравнений
Источники:
Решим первое уравнение полученной системы:
Вернемся к системе:
Решим первую систему полученной совокупности:
Решим вторую систему полученной совокупности:
Следовательно, — решения системы уравнений.
Критерии оценивания выполнения задания | Баллы |
Обоснованно получен верный ответ | 2 |
Решение доведено до конца, но допущена арифметическая ошибка, с её учётом дальнейшие шаги выполнены верно | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Решите систему уравнений
Источники:
Решим первое уравнение полученной системы:
Вернемся к системе:
Решим первую систему полученной совокупности:
Решим вторую систему полученной совокупности:
Следовательно, — решения системы уравнений.
Критерии оценивания выполнения задания | Баллы |
Обоснованно получен верный ответ | 2 |
Решение доведено до конца, но допущена арифметическая ошибка, с её учётом дальнейшие шаги выполнены верно | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Решите уравнение
Источники:
Заметим, что Тогда
Преобразуем левую часть полученного уравнения, воспользовавшись формулой разности квадратов:
Произведение равно нулю, когда хотя бы один из множителей равен нулю, поэтому полученное уравнение равносильно совокупности:
Решим первое уравнение совокупности:
Следовательно, первое уравнение совокупности не имеет решений.
Решим второе уравнение совокупности:
Таким образом,
Критерии оценивания выполнения задания | Баллы |
Обоснованно получен верный ответ | 2 |
Решение доведено до конца, но допущена арифметическая ошибка, с её учётом дальнейшие шаги выполнены верно | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Решите уравнение
Источники:
Заметим, что Тогда
Преобразуем левую часть полученного уравнения, воспользовавшись формулой разности квадратов:
Произведение равно нулю, когда хотя бы один из множителей равен нулю, поэтому полученное уравнение равносильно совокупности:
Решим первое уравнение совокупности:
Следовательно, первое уравнение совокупности не имеет решений.
Решим второе уравнение совокупности:
Таким образом,
Критерии оценивания выполнения задания | Баллы |
Обоснованно получен верный ответ | 2 |
Решение доведено до конца, но допущена арифметическая ошибка, с её учётом дальнейшие шаги выполнены верно | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Решите систему уравнений
Источники:
Домножим первое уравнение системы на 4:
Левые части равны, следовательно, равны и правые части. Тогда
Критерии оценивания выполнения задания | Баллы |
Обоснованно получен верный ответ | 2 |
Решение доведено до конца, но допущена арифметическая ошибка, с её учётом дальнейшие шаги выполнены верно | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Решите систему уравнений
Источники:
Домножим первое уравнение системы на 4:
Левые части равны, следовательно, равны и правые части. Тогда
Критерии оценивания выполнения задания | Баллы |
Обоснованно получен верный ответ | 2 |
Решение доведено до конца, но допущена арифметическая ошибка, с её учётом дальнейшие шаги выполнены верно | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Решите уравнение
Источники:
Сделаем замену Тогда Решим новое уравнение:
Сделаем обратную замену:
Так как для любого верно, что то второе уравнение полученной совокупности не имеет решений.
Решим первое уравнение:
Воспользуемся формулой разности квадратов:
Произведение равно нулю, когда хотя бы один из множителей равен нулю, поэтому полученное уравнение равносильно совокупности:
Критерии оценивания выполнения задания | Баллы |
Обоснованно получен верный ответ | 2 |
Решение доведено до конца, но допущена арифметическая ошибка, с её учётом дальнейшие шаги выполнены верно | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Решите уравнение
Источники:
Сделаем замену Тогда Решим новое уравнение:
Сделаем обратную замену:
Так как для любого верно, что то второе уравнение полученной совокупности не имеет решений.
Решим первое уравнение:
Воспользуемся формулой разности квадратов:
Произведение равно нулю, когда хотя бы один из множителей равен нулю, поэтому полученное уравнение равносильно совокупности:
Критерии оценивания выполнения задания | Баллы |
Обоснованно получен верный ответ | 2 |
Решение доведено до конца, но допущена арифметическая ошибка, с её учётом дальнейшие шаги выполнены верно | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Сократите дробь
Источники:
Критерии оценивания выполнения задания | Баллы |
Обоснованно получен верный ответ | 2 |
Решение доведено до конца, но допущена арифметическая ошибка, с её учётом дальнейшие шаги выполнены верно | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Решите систему уравнений
Источники:
Преобразуем систему уравнений:
Если то Тогда
Критерии оценивания выполнения задания | Баллы |
Обоснованно получен верный ответ | 2 |
Решение доведено до конца, но допущена арифметическая ошибка, с её учётом дальнейшие шаги выполнены верно | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Решите систему уравнений
Источники:
Преобразуем систему уравнений:
Если то Тогда
Критерии оценивания выполнения задания | Баллы |
Обоснованно получен верный ответ | 2 |
Решение доведено до конца, но допущена арифметическая ошибка, с её учётом дальнейшие шаги выполнены верно | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Решите неравенство
Источники:
Посчитаем дискриминант знаменателя, чтобы разложить его на множители:
Перепишем наше неравенство:
Воспользуемся методом интервалов, для этого найдем знак неравенства, например при
Точки и выколотые, так как это нули знаменателя.
Таким образом, ответ
Критерии оценивания выполнения задания | Баллы |
Обоснованно получен верный ответ | 2 |
Решение доведено до конца, но допущена арифметическая ошибка, с её учётом дальнейшие шаги выполнены верно | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Решите уравнения
Источники:
Преобразуем уравнение
Для этого решим уравнение По теореме Виета
Тогда
Следовательно,
Произведение равно нулю, когда хотя бы один из множителей равен нулю, поэтому полученное уравнение равносильно совокупности:
Решим первое уравнение совокупности:
Решим второе уравнение совокупности:
Следовательно, второе уравнение совокупности не имеет решений. Тогда
Критерии оценивания выполнения задания | Баллы |
Обоснованно получен верный ответ | 2 |
Решение доведено до конца, но допущена арифметическая ошибка, с её учётом дальнейшие шаги выполнены верно | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Решите уравнение
Источники:
Преобразуем уравнение
Для этого решим уравнение По теореме Виета
Тогда
Следовательно,
Произведение равно нулю, когда хотя бы один из множителей равен нулю, поэтому полученное уравнение равносильно совокупности:
Решим первое уравнение совокупности:
Решим второе уравнение совокупности:
Следовательно, второе уравнение совокупности не имеет решений. Тогда
Критерии оценивания выполнения задания | Баллы |
Обоснованно получен верный ответ | 2 |
Решение доведено до конца, но допущена арифметическая ошибка, с её учётом дальнейшие шаги выполнены верно | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Решите уравнение
Источники:
Запишем ОДЗ. Подкоренное выражение неотрицательно, поэтому
Решим уравнение на ОДЗ:
Из ОДЗ значит, — единственный корень.
Критерии оценивания выполнения задания | Баллы |
Обоснованно получен верный ответ | 2 |
Решение доведено до конца, но допущена арифметическая ошибка, с её учётом дальнейшие шаги выполнены верно | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Решите уравнение
Источники:
Запишем ОДЗ. Подкоренное выражение неотрицательно, поэтому
Решим уравнение на ОДЗ:
Из ОДЗ значит, — единственный корень.
Критерии оценивания выполнения задания | Баллы |
Обоснованно получен верный ответ | 2 |
Решение доведено до конца, но допущена арифметическая ошибка, с её учётом дальнейшие шаги выполнены верно | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Решите неравенство
Источники:
Воспользуемся формулой разности квадратов:
Домножим на
Решим неравенство методом интервалов.
Найдем нули:
- 1.
- 2.
Тогда решением неравенства будет
Критерии оценивания выполнения задания | Баллы |
Обоснованно получен верный ответ | 2 |
Решение доведено до конца, но допущена арифметическая ошибка, с её учётом дальнейшие шаги выполнены верно | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
Ошибка.
Попробуйте повторить позже
Решите систему уравнений
Источники:
Если то Значит,
Так как то
Подставим в первое уравнение:
Решим первое уравнение системы. Так как домножим уравнение на
Сделаем замену
Вернёмся к системе:
Воспользуемся формулой разности квадратов:
Получаем ответ:
Критерии оценивания выполнения задания | Баллы |
Обоснованно получен верный ответ | 2 |
Решение доведено до конца, но допущена арифметическая ошибка, с её учётом дальнейшие шаги выполнены верно | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |