Тема №25. Геометрические задачи повышенной сложности

01 Задачи №25 из банка ФИПИ 01.11 №25. Тип 11

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела №25. геометрические задачи повышенной сложности
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#105602Максимум баллов за задание: 2

Четырёхугольник ABCD  со сторонами AB = 39  и CD  =12  вписан в окружность. Диагонали AC  и BD  пересекаются в точке K,  причём ∠AKB  = 60∘.  Найдите радиус окружности, описанной около этого четырёхугольника.

Источники: Банк ФИПИ | Сборник И.В. Ященко 2025 г. Вариант 10

Показать ответ и решение

Проведём DM  ∥AC.  Тогда ∠BKA  = ∠BDM   = 60∘ как соответственные углы, образованные параллельными прямыми DM  и AC  и секущей BD.

Проведём AM.  ∠CAD  =∠ADM  как накрест лежащие углы при AC ∥ MD  и секущей AD.

CDABMK61110222∘0∘

∠CAD  — вписанный и опирается на дугу CD,  ∠ADM  — вписанный и опирается на дугу AM.  Так как ∠CAD  = ∠ADM,  то дуги CD  и AM  равны, следовательно, хорды, которые их стягивают, тоже равны, то есть AM  = CD = 12.

Рассмотрим четырёхугольник ABDM.  Так как он вписанный, то по свойству вписанного четырехугольника

∠MAB  + ∠MDB  = 180∘ ⇒ ∠MAB  = 180∘− 60∘ = 120∘

Проведём BM.  Рассмотрим треугольник ABM.  Запишем теорему косинусов для него:

BM2  = AB2 + AM2 − 2⋅AB ⋅AM ⋅cos∠BAM
    BM2 = 1521+ 144 − 2 ⋅39 ⋅12⋅cos120∘
                         (   )
        BM2  = 1665− 936 ⋅ − 1
           2               2√---
       BM   = 2133⇒ BM  = 3 237

Пусть радиус окружности равен R.  Заметим, что описанной окружностью для △ ABM  будет эта же окружность. По теореме синусов для треугольника ABM

   sBinM120∘ =2R
    √ ---
   3-√237 = 2R
     -32
     ∘ ----   --
R = 3  237= 3√79
        3
Ответ:

 √ --
3  79

Критерии оценки

Критерии оценивания выполнения задания

Баллы

Ход решения верный, получен верный ответ

2

Ход решения верный, все его шаги присутствуют, но допущена арифметическая ошибка

1

Решение не соответствует ни одному из критериев, перечисленных выше

0

Максимальный балл

2

Ошибка.
Попробуйте повторить позже

Задача 2#41486Максимум баллов за задание: 2

Четырёхугольник ABCD  со сторонами AB = 12  и CD  =30  вписан в окружность. Диагонали AC  и BD  пересекаются в точке K,  причём ∠AKB  = 60∘ . Найдите радиус окружности, описанной около этого четырёхугольника.

Источники: Банк ФИПИ

Показать ответ и решение

Проведём DM  ∥AC.  Тогда ∠BKA  = ∠BDM   = 60∘ как соответственные углы, образованные параллельными прямыми DM  и AC  и секущей BD.

Проведём AM.  ∠CAD  =∠ADM  как накрест лежащие углы при AC ∥ MD  и секущей AD.

 ∘∘
ABCDKM613302000

∠CAD  — вписанный и опирается на дугу CD,  ∠ADM  — вписанный и опирается на дугу AM.  Так как ∠CAD  = ∠ADM,  то дуги CD  и AM  равны, следовательно, хорды, которые их стягивают, тоже равны, то есть AM  = CD = 30.

Рассмотрим четырёхугольник ABDM.  Так как он вписанный, то по свойству вписанного четырехугольника

∠MAB  + ∠MDB  = 180∘ ⇒ ∠MAB  = 180∘− 60∘ = 120∘

Проведём BM.  Рассмотрим треугольник ABM.  Запишем теорему косинусов для него:

BM2  = AB2 + AM2 − 2⋅AB ⋅AM ⋅cos∠BAM
    BM2  =144+ 900− 2⋅12⋅30⋅cos120∘
                         (   )
        BM2  = 1044− 720 ⋅ − 1
           2               2√ --
        BM   =1404⇒  BM = 6  39

Пусть радиус окружности равен R.  Заметим, что описанной окружностью для △ ABM  будет эта же окружность. По теореме синусов для треугольника ABM

  sBinM120∘ =2R
    √--
   6√39-= 2R
    -32
    ∘ ---    --
R = 6 39 = 6√ 13
       3
Ответ:

 √ --
6  13

Критерии оценки

Критерии оценивания выполнения задания

Баллы

Ход решения верный, получен верный ответ

2

Ход решения верный, все его шаги присутствуют, но допущена арифметическая ошибка

1

Решение не соответствует ни одному из критериев, перечисленных выше

0

Максимальный балл

2

Ошибка.
Попробуйте повторить позже

Задача 3#42886Максимум баллов за задание: 2

Четырехугольник ABCD  со сторонами AB = 40  и CD  =10  вписан в окружность. Диагонали AC  и BD  пересекаются в точке K,  причем ∠AKB  = 60∘.  Найдите радиус окружности, описанной около этого четырехугольника.

Источники: Банк ФИПИ

Показать ответ и решение

Проведём DM  ∥AC.  Тогда ∠BKA  = ∠BDM   = 60∘ как соответственные углы, образованные параллельными прямыми DM  и AC  и секущей BD.

Проведём AM.  ∠CAD  =∠ADM  как накрест лежащие углы при AC ∥ MD  и секущей AD.

CDABMK61110200∘0∘

∠CAD  — вписанный и опирается на дугу CD,  ∠ADM  — вписанный и опирается на дугу AM.  Так как ∠CAD  = ∠ADM,  то дуги CD  и AM  равны, следовательно, хорды, которые их стягивают, тоже равны, то есть AM  = CD = 10.

Рассмотрим четырёхугольник ABDM.  Так как он вписанный, то по свойству вписанного четырехугольника

∠MAB  + ∠MDB  = 180∘ ⇒ ∠MAB  = 180∘− 60∘ = 120∘

Проведём BM.  Рассмотрим треугольник ABM.  Запишем теорему косинусов для него:

BM2  = AB2 + AM2 − 2⋅AB ⋅AM ⋅cos∠BAM
    BM2 = 1600+ 100 − 2 ⋅40 ⋅10⋅cos120∘
                         (   )
        BM2  = 1700− 800 ⋅ − 1
           2               2√--
       BM   = 2100⇒ BM  = 10 21

Пусть радиус окружности равен R.  Заметим, что описанной окружностью для △ ABM  будет эта же окружность. По теореме синусов для треугольника ABM

   sBinM120∘ =2R
     √ --
   10√-21 = 2R
     -32
      ∘---     -
R = 10  21= 10√7
        3
Ответ:

  √-
10 7

Критерии оценки

Критерии оценивания выполнения задания

Баллы

Ход решения верный, получен верный ответ

2

Ход решения верный, все его шаги присутствуют, но допущена арифметическая ошибка

1

Решение не соответствует ни одному из критериев, перечисленных выше

0

Максимальный балл

2

Ошибка.
Попробуйте повторить позже

Задача 4#56389Максимум баллов за задание: 2

Четырёхугольник ABCD  со сторонами AB = 5  и CD  = 17  вписан в окружность. Диагонали AC  и BD  пересекаются в точке K,  причём ∠AKB  = 60∘.  Найдите радиус окружности, описанной около этого четырёхугольника.

Источники: Банк ФИПИ

Показать ответ и решение

ABCDKM61110∘2077∘

Проведём DM  ∥AC.  Тогда                   ∘
∠BKA  = ∠BDM   = 60 как соответственные углы, образованные параллельными прямыми DM  и AC  и секущей BD.

Проведём AM.  ∠CAD  =∠ADM  как накрест лежащие углы при AC ∥ MD  и секущей AD.

∠CAD  — вписанный и опирается на дугу CD,  ∠ADM  — вписанный и опирается на дугу AM.  Так как ∠CAD  = ∠ADM,  то дуги CD  и AM  равны, следовательно, хорды, которые их стягивают, тоже равны, то есть AM  = CD = 17.

Рассмотрим четырёхугольник ABDM.  Так как он вписанный, то по свойству вписанного четырехугольника

∠MAB  + ∠MDB  = 180∘ ⇒ ∠MAB  = 180∘− 60∘ = 120∘

Проведём BM.  Рассмотрим треугольник ABM.  Запишем теорему косинусов для него:

BM2  = AB2 + AM2 − 2⋅AB ⋅AM ⋅cos∠BAM
     BM2 = 25+ 289− 2⋅5⋅17⋅cos120∘
                        (   )
         BM2  =314− 170⋅ − 1
            2             √2--
        BM   = 399⇒ BM  =  399

Пусть радиус окружности равен R.  Заметим, что описанной окружностью для △ ABM  будет эта же окружность. По теореме синусов для треугольника ABM

  sBinM120∘ =2R
   √---
   -3√99-= 2R
    -32
   ∘ ----   ---
R =  399 = √133
      3
Ответ:

√ ---
  133

Критерии оценки

Критерии оценивания выполнения задания

Баллы

Ход решения верный, получен верный ответ

2

Ход решения верный, все его шаги присутствуют, но допущена арифметическая ошибка

1

Решение не соответствует ни одному из критериев, перечисленных выше

0

Максимальный балл

2

Ошибка.
Попробуйте повторить позже

Задача 5#105600Максимум баллов за задание: 2

Четырёхугольник ABCD  со сторонами AB = 43  и CD  =4  вписан в окружность. Диагонали AC  и BD  пересекаются в точке K,  причём ∠AKB  = 60∘.  Найдите радиус окружности, описанной около этого четырёхугольника.

Источники: Банк ФИПИ

Показать ответ и решение

Проведём DM  ∥AC.  Тогда ∠BKA  = ∠BDM   = 60∘ как соответственные углы, образованные параллельными прямыми DM  и AC  и секущей BD.

Проведём AM.  ∠CAD  =∠ADM  как накрест лежащие углы при AC ∥ MD  и секущей AD.

CDABMK614402∘0∘

∠CAD  — вписанный и опирается на дугу CD,  ∠ADM  — вписанный и опирается на дугу AM.  Так как ∠CAD  = ∠ADM,  то дуги CD  и AM  равны, следовательно, хорды, которые их стягивают, тоже равны, то есть AM  = CD = 4.

Рассмотрим четырёхугольник ABDM.  Так как он вписанный, то по свойству вписанного четырехугольника

∠MAB  + ∠MDB  = 180∘ ⇒ ∠MAB  = 180∘− 60∘ = 120∘

Проведём BM.  Рассмотрим треугольник ABM.  Запишем теорему косинусов для него:

BM2  = AB2 + AM2 − 2⋅AB ⋅AM ⋅cos∠BAM
    BM2  = 1849+ 16 − 2 ⋅43 ⋅4⋅cos120∘
                         (   )
        BM2  = 1865− 344 ⋅ − 1
           2              √2---
       BM   = 2037⇒ BM  =  2037

Пусть радиус окружности равен R.  Заметим, что описанной окружностью для △ ABM  будет эта же окружность. По теореме синусов для треугольника ABM

   sBinM120∘ =2R
   √ ----
   --2√037 = 2R
     -32
    ∘ ----   ---
R =   2037= √679
       3
Ответ:

√ ---
  679

Критерии оценки

Критерии оценивания выполнения задания

Баллы

Ход решения верный, получен верный ответ

2

Ход решения верный, все его шаги присутствуют, но допущена арифметическая ошибка

1

Решение не соответствует ни одному из критериев, перечисленных выше

0

Максимальный балл

2

Ошибка.
Попробуйте повторить позже

Задача 6#105601Максимум баллов за задание: 2

Четырёхугольник ABCD  со сторонами AB = 25  и CD  =16  вписан в окружность. Диагонали AC  и BD  пересекаются в точке K,  причём ∠AKB  = 60∘.  Найдите радиус окружности, описанной около этого четырёхугольника.

Источники: Банк ФИПИ

Показать ответ и решение

Проведём DM  ∥AC.  Тогда ∠BKA  = ∠BDM   = 60∘ как соответственные углы, образованные параллельными прямыми DM  и AC  и секущей BD.

Проведём AM.  ∠CAD  =∠ADM  как накрест лежащие углы при AC ∥ MD  и секущей AD.

CDABMK61110266∘0∘

∠CAD  — вписанный и опирается на дугу CD,  ∠ADM  — вписанный и опирается на дугу AM.  Так как ∠CAD  = ∠ADM,  то дуги CD  и AM  равны, следовательно, хорды, которые их стягивают, тоже равны, то есть AM  = CD = 16.

Рассмотрим четырёхугольник ABDM.  Так как он вписанный, то по свойству вписанного четырехугольника

∠MAB  + ∠MDB  = 180∘ ⇒ ∠MAB  = 180∘− 60∘ = 120∘

Проведём BM.  Рассмотрим треугольник ABM.  Запишем теорему косинусов для него:

BM2  = AB2 + AM2 − 2⋅AB ⋅AM ⋅cos∠BAM
    BM2  =625+ 256− 2⋅25⋅16⋅cos120∘
                        (   )
         BM2  =881− 800⋅ − 1
           2              √2---
       BM   = 1281⇒ BM  =  1281

Пусть радиус окружности равен R.  Заметим, что описанной окружностью для △ ABM  будет эта же окружность. По теореме синусов для треугольника ABM

   sBinM120∘ =2R
   √ ----
   --1√281 = 2R
     -32
    ∘ ----   ---
R =   1281= √427
       3
Ответ:

√ ---
  427

Критерии оценки

Критерии оценивания выполнения задания

Баллы

Ход решения верный, получен верный ответ

2

Ход решения верный, все его шаги присутствуют, но допущена арифметическая ошибка

1

Решение не соответствует ни одному из критериев, перечисленных выше

0

Максимальный балл

2

Ошибка.
Попробуйте повторить позже

Задача 7#105603Максимум баллов за задание: 2

Четырёхугольник ABCD  со сторонами AB = 44  и CD  =8  вписан в окружность. Диагонали AC  и BD  пересекаются в точке K,  причём ∠AKB  = 60∘.  Найдите радиус окружности, описанной около этого четырёхугольника.

Источники: Банк ФИПИ

Показать ответ и решение

Проведём DM  ∥AC.  Тогда ∠BKA  = ∠BDM   = 60∘ как соответственные углы, образованные параллельными прямыми DM  и AC  и секущей BD.

Проведём AM.  ∠CAD  =∠ADM  как накрест лежащие углы при AC ∥ MD  и секущей AD.

CDABMK618802∘0∘

∠CAD  — вписанный и опирается на дугу CD,  ∠ADM  — вписанный и опирается на дугу AM.  Так как ∠CAD  = ∠ADM,  то дуги CD  и AM  равны, следовательно, хорды, которые их стягивают, тоже равны, то есть AM  = CD = 8.

Рассмотрим четырёхугольник ABDM.  Так как он вписанный, то по свойству вписанного четырехугольника

∠MAB  + ∠MDB  = 180∘ ⇒ ∠MAB  = 180∘− 60∘ = 120∘

Проведём BM.  Рассмотрим треугольник ABM.  Запишем теорему косинусов для него:

BM2  = AB2 + AM2 − 2⋅AB ⋅AM ⋅cos∠BAM
    BM2  = 1936+ 64 − 2 ⋅44 ⋅8⋅cos120∘
                         (   )
        BM2  = 2000− 704 ⋅ − 1
           2               2√ -
        BM   =2352⇒  BM = 28  3

Пусть радиус окружности равен R.  Заметим, что описанной окружностью для △ ABM  будет эта же окружность. По теореме синусов для треугольника ABM

sBinM120∘ =2R
   √-
 28√-3-= 2R
  -32

  R = 28
Ответ: 28
Критерии оценки

Критерии оценивания выполнения задания

Баллы

Ход решения верный, получен верный ответ

2

Ход решения верный, все его шаги присутствуют, но допущена арифметическая ошибка

1

Решение не соответствует ни одному из критериев, перечисленных выше

0

Максимальный балл

2

Ошибка.
Попробуйте повторить позже

Задача 8#105604Максимум баллов за задание: 2

Четырёхугольник ABCD  со сторонами AB = 11  и CD  =41  вписан в окружность. Диагонали AC  и BD  пересекаются в точке K,  причём ∠AKB  = 60∘.  Найдите радиус окружности, описанной около этого четырёхугольника.

Источники: Банк ФИПИ

Показать ответ и решение

Проведём DM  ∥AC.  Тогда ∠BKA  = ∠BDM   = 60∘ как соответственные углы, образованные параллельными прямыми DM  и AC  и секущей BD.

Проведём AM.  ∠CAD  =∠ADM  как накрест лежащие углы при AC ∥ MD  и секущей AD.

 ∘∘
ABCDKM614402011

∠CAD  — вписанный и опирается на дугу CD,  ∠ADM  — вписанный и опирается на дугу AM.  Так как ∠CAD  = ∠ADM,  то дуги CD  и AM  равны, следовательно, хорды, которые их стягивают, тоже равны, то есть AM  = CD = 41.

Рассмотрим четырёхугольник ABDM.  Так как он вписанный, то по свойству вписанного четырехугольника

∠MAB  + ∠MDB  = 180∘ ⇒ ∠MAB  = 180∘− 60∘ = 120∘

Проведём BM.  Рассмотрим треугольник ABM.  Запишем теорему косинусов для него:

BM2  = AB2 + AM2 − 2⋅AB ⋅AM ⋅cos∠BAM
    BM2 = 121+ 1681 − 2 ⋅11 ⋅41⋅cos120∘
                         (   )
        BM2  = 1802− 902 ⋅ − 1
           2              √2---
       BM   = 2253⇒ BM  =  2253

Пусть радиус окружности равен R.  Заметим, что описанной окружностью для △ ABM  будет эта же окружность. По теореме синусов для треугольника ABM

   sBinM120∘ =2R
   √ ----
   --2√253 = 2R
     -32
    ∘ ----   ---
R =   2253= √751
       3
Ответ:

√ ---
  751

Критерии оценки

Критерии оценивания выполнения задания

Баллы

Ход решения верный, получен верный ответ

2

Ход решения верный, все его шаги присутствуют, но допущена арифметическая ошибка

1

Решение не соответствует ни одному из критериев, перечисленных выше

0

Максимальный балл

2

Ошибка.
Попробуйте повторить позже

Задача 9#105605Максимум баллов за задание: 2

Четырёхугольник ABCD  со сторонами AB = 39  и CD  =6  вписан в окружность. Диагонали AC  и BD  пересекаются в точке K,  причём ∠AKB  = 60∘.  Найдите радиус окружности, описанной около этого четырёхугольника.

Источники: Банк ФИПИ

Показать ответ и решение

Проведём DM  ∥AC.  Тогда ∠BKA  = ∠BDM   = 60∘ как соответственные углы, образованные параллельными прямыми DM  и AC  и секущей BD.

Проведём AM.  ∠CAD  =∠ADM  как накрест лежащие углы при AC ∥ MD  и секущей AD.

CDABMK616602∘0∘

∠CAD  — вписанный и опирается на дугу CD,  ∠ADM  — вписанный и опирается на дугу AM.  Так как ∠CAD  = ∠ADM,  то дуги CD  и AM  равны, следовательно, хорды, которые их стягивают, тоже равны, то есть AM  = CD = 6.

Рассмотрим четырёхугольник ABDM.  Так как он вписанный, то по свойству вписанного четырехугольника

∠MAB  + ∠MDB  = 180∘ ⇒ ∠MAB  = 180∘− 60∘ = 120∘

Проведём BM.  Рассмотрим треугольник ABM.  Запишем теорему косинусов для него:

BM2  = AB2 + AM2 − 2⋅AB ⋅AM ⋅cos∠BAM
    BM2  = 1521+ 36 − 2 ⋅39 ⋅6⋅cos120∘
                         (   )
        BM2  = 1557− 468 ⋅ − 1
           2              √2---
       BM   = 1791⇒ BM  =  1791

Пусть радиус окружности равен R.  Заметим, что описанной окружностью для △ ABM  будет эта же окружность. По теореме синусов для треугольника ABM

   sBinM120∘ =2R
   √ ----
   --1√791 = 2R
     -32
    ∘ ----   ---
R =   1791= √597
       3
Ответ:

√ ---
  597

Критерии оценки

Критерии оценивания выполнения задания

Баллы

Ход решения верный, получен верный ответ

2

Ход решения верный, все его шаги присутствуют, но допущена арифметическая ошибка

1

Решение не соответствует ни одному из критериев, перечисленных выше

0

Максимальный балл

2

Ошибка.
Попробуйте повторить позже

Задача 10#105606Максимум баллов за задание: 2

Четырёхугольник ABCD  со сторонами AB = 34  и CD  =22  вписан в окружность. Диагонали AC  и BD  пересекаются в точке K,  причём ∠AKB  = 60∘.  Найдите радиус окружности, описанной около этого четырёхугольника.

Источники: Банк ФИПИ

Показать ответ и решение

Проведём DM  ∥AC.  Тогда ∠BKA  = ∠BDM   = 60∘ как соответственные углы, образованные параллельными прямыми DM  и AC  и секущей BD.

Проведём AM.  ∠CAD  =∠ADM  как накрест лежащие углы при AC ∥ MD  и секущей AD.

CDABMK61220222∘0∘

∠CAD  — вписанный и опирается на дугу CD,  ∠ADM  — вписанный и опирается на дугу AM.  Так как ∠CAD  = ∠ADM,  то дуги CD  и AM  равны, следовательно, хорды, которые их стягивают, тоже равны, то есть AM  = CD = 22.

Рассмотрим четырёхугольник ABDM.  Так как он вписанный, то по свойству вписанного четырехугольника

∠MAB  + ∠MDB  = 180∘ ⇒ ∠MAB  = 180∘− 60∘ = 120∘

Проведём BM.  Рассмотрим треугольник ABM.  Запишем теорему косинусов для него:

BM2  = AB2 + AM2 − 2⋅AB ⋅AM ⋅cos∠BAM
    BM2 = 1156+ 484 − 2 ⋅34 ⋅22⋅cos120∘
                         (   )
        BM2  = 1640− 1496⋅ − 1
           2               √2--
       BM   = 2388⇒ BM  = 2 597

Пусть радиус окружности равен R.  Заметим, что описанной окружностью для △ ABM  будет эта же окружность. По теореме синусов для треугольника ABM

   sBinM120∘ =2R
    √ ---
   2-√597 = 2R
     -32
    ∘ ----    ---
R =2  597 = 2√ 199
       3
Ответ:

 √ ---
2  199

Критерии оценки

Критерии оценивания выполнения задания

Баллы

Ход решения верный, получен верный ответ

2

Ход решения верный, все его шаги присутствуют, но допущена арифметическая ошибка

1

Решение не соответствует ни одному из критериев, перечисленных выше

0

Максимальный балл

2
Рулетка
Вы можете получить скидку в рулетке!