Комбинаторика, теорвер и теория чисел на Физтехе
Ошибка.
Попробуйте повторить позже
Найдите все тройки натуральных чисел такие, что:
- — четырёхзначное число, составленное из одинаковых цифр,
- — трёхзначное число, хотя бы одна из цифр которого равна 2,
- — двузначное число, хотя бы одна из цифр которого равна 3,
- произведение является квадратом некоторого натурального числа.
Подсказка 1
Что мы знаем про полные квадраты? Как определить, является ли число полным квадратом или нет?
Подсказка 2
Каждый простой делитель входит в разложение квадрата в чётной степени! Значит, имеет смысл зацепиться за делимость ;)
Подсказка 3
На что делится число A?
Подсказка 4
Число A обязательно делится на 11 и 101.Тогда можно сделать какие-то выводы о B и C ;)
Заметим, что число представляется в виде
. В произведении
множители 11 и 101 встречаются чётное число раз.
Таким образом, трёхзначное число
должно быть кратно 101, а двузначное число
— кратно 11. В силу условий
.
Следовательно,
Отсюда .
Ошибка.
Попробуйте повторить позже
В начале месяца было выделено 4 билета на праздничный концерт, которые планировалось случайным образом распределить между одиннадцатиклассниками. В конце месяца выяснилось, что будет выделено больше 4 билетов. Одиннадцатиклассники Петя и Вася вычислили, что вероятность им обоим вместе попасть на концерт в начале месяца была в 2,5 раза меньше, чем оказалась в конце месяца. Сколько всего было выделено билетов на концерт в конце месяца, если количество одиннадцатиклассников не изменилось?
Подсказка 1
Хочется записать уравнения, поэтому обозначим за N количество одноклассников, а за m > 4 — количество билетов, которые были выделены в конце месяца. Какова вероятность выпадения двум мальчикам билетов в начале месяца?
Подсказка 2
Чтобы посчитать количество вариантов, когда двум мальчикам выпадают билеты, можно сначала отдам им билеты, а затем оставшиеся 2 распределить между другими.
Подсказка 3
Отлично, тогда вероятность в начале месяца была 12/(N(N-1)).А теперь считаем вероятность на конце месяца ;)
Подсказка 4
В конце месяца вероятность (m(m-1))/(N(N-1)). А теперь нужно составить уравнение ;)
Пусть всего одиннадцатиклассников человек, а в конце месяца будет выделено
билетов. Количество способов распределить 4
билета между учениками в начале месяца равно
, а количество способов распределения билетов, когда Петя и Вася попадают на
концерт, равно
(Петя и Вася получают билеты, а ещё два билета распределяются между оставшимися
учениками). Значит,
вероятность обоим ученикам попасть на концерт в начале месяца была равна
Аналогично получаем, что вероятность, что Петя и Коля оба попадут на концерт в конце месяца, равна
Следовательно, вероятность увеличилась в раз (эта величина не зависит от
). Отсюда получаем, что
Это уравнение имеет единственный положительный корень .
Ошибка.
Попробуйте повторить позже
Сколькими способами можно представить число в виде произведения двух натуральных чисел
и
где
делится на
Источники:
Подсказка 1
Заметим, что x и y имеют в разложении на простые множители только двойки и тройки. Как соотносятся их степени вхождения, если y делится на x?
Подсказка 2
Да, степень вхождения и двойки, и тройки в y больше, чем в x. Тогда можно обозначить эти степени вхождения переменными, а дальше перемножить варианты степени вхождения двойки и тройки в y.
Заметим, что делитель числа не может иметь простые множители кроме 2 и 3, так как само
имеет только эти простые числа в своем
каноническом разложении. Отсюда любой делитель
имеет вид
где
и
Тогда так же имеет вид
с аналогичными условиями на
и
Отсюда
Рассмотрим отношение чисел и
Получившееся число является целым, так как делится на
по условию. Это значит, что
и
то есть
и
Таким образом, у нас есть способ выбрать число
на каждый из которых есть
способ
выбрать число
откуда количество способов выбрать пару
и
равно
При этом каждая такая пара задаёт
разложение числа
на множители
и
где
делится на
поэтому
и будет ответом.
50451
Ошибка.
Попробуйте повторить позже
Десятичная запись натурального числа состоит из 40000 девяток. Сколько девяток содержит десятичная запись числа
Подсказка 1
Чтобы понять, чему равен n³, нам нужно записать n в виде какого-то выражения, как мы можем это сделать?
Подсказка 2
Если сразу сделать это не удается, можно заметить некоторую закономерность: если число состоит из одной девятки, то его можно записать как 10¹ - 1, если из двух девяток – 10² - 1, если из трёх – 10³ - 1, и так далее. Таким образом легко понять, что n = 10⁴⁰⁰⁰⁰ - 1.
Подсказка 3
Теперь мы можем возвести полученное выражение в куб, представить, как в десятичной записи выглядит число n³ + 1, а после вычесть единицу и сосчитать количество девяток!
Число равно
Тогда
Выполняя арифметические операции, получим число
В нем 2 «участка» из 39999 и 40000 девяток соответственно. Итого, 79999 девяток.
79999
Ошибка.
Попробуйте повторить позже
В телеигре ведущий берет несколько коробок и ровно в три из них кладет по одному шарику. Игрок может указать на пять коробок и открыть их. Если в этих коробках лежат все три шарика, то игрок выигрывает. Игроку разрешили открыть шесть коробок. Во сколько раз увеличилась вероятность выигрыша игрока?
Подсказка 1
Вероятность – это отношение количества благоприятных исходов к общему числу исходов. Пусть всего есть N коробок, сколькими способами мы можем выбрать 5 из них (то есть сколько всего у нас исходов)?
Подсказка 2
Конечно же это число сочетаний из N по 5. Теперь давайте думать, сколько у нас есть благоприятных исходов. Нам нужно выбрать три коробки с шарами и две пустые, сколькими способами можно это сделать?
Подсказка 3
Три коробки с шарами можно выбрать единственным способом, а вот сколькими способами из оставшихся N - 3 коробок можно выбрать две?
Подсказка 4
Тут получаем число сочетаний из N - 3 по 2. Теперь мы легко можем записать выражение для вероятности выигрыша для случая с пятью коробками) Теперь проделываем то же самое с шестью коробками, делим одно на другое и получаем ответ!
Пусть всего было коробок.
Вычислим первоначальную вероятность выигрыша. Общее количество исходов эксперимента равно количеству способов выбрать 5
различных коробок из то есть
Должны быть выбраны все 3 коробки с шариками и 2 произвольные из оставшихся
поэтому
количество благоприятный исходов равно
Вероятность выигрыша равна
Теперь аналогичным образом посчитаем вероятность выигрыша, если нам разрешать открыть 6 коробок (угадываем 3 коробки с шариками, а также выбираем 3 произвольных из оставшихся):
Тогда
Следовательно, вероятность выигрыша увеличилась в 2 раза.
2
Ошибка.
Попробуйте повторить позже
Из множества состоящего из семи подряд идущих натуральных чисел, выбираются шестёрки попарно различных чисел такие, что
сумма чисел в каждой из шестёрок — простое число. Пусть
и
— две из таких сумм. Найдите множество
, если
Подсказка 1
Давайте скажем, что первое число - это а и поймем, чему равна сумма во всех шестерках и какие из них могут быть простыми, а какие нет.
Подсказка 2
Тогда у нас получаются суммы шестерок - это числа от 6a + 15, до 6a + 21. Из за делимости на 2 или 3, подходят только числа 6a + 19 и 6a + 17. А это значит, что это ровно наши числа p и q. Остается решить квадратное уравнение на а и найти ответ(подставить значения p и q в равенство).
Пусть — наименьшее натуральное число из
Тогда
Сумма всех чисел равна
Переберем сумму шестёрок чисел:
Тогда, По условию задачи
или то же самое, что и
Следовательно, может быть только множеством
Проверка: — простое,
— простое.
Ошибка.
Попробуйте повторить позже
Дан клетчатый прямоугольник . Сколькими способами можно закрасить 8 клеток этого прямоугольника так, чтобы закрашенное
множество обладало хотя бы одной из следующих симметрий: относительно центра прямоугольника, относительно любой из двух "средних
линий"прямоугольника ("средней линией"прямоутольника назовём отрезок, соединяющий середины двух его противоположных
сторон). Ответ дайте в виде выражения, содержащего не более трёх членов (в них могут входить факториалы, биномиальные
коэффициенты).
Подсказка 1
Давайте начнём распутывать клубок симметрий с того, что обозначим за A₁ множество восьмёрок симметричных относительно одной горизонтальной средний линии, за A₂ - вертикальной, за B - относительно центра прямоугольника. Давайте подумаем, сколько нам нужно зафиксировать точек для каждой из симметрий и где, чтобы однозначно восстановить всю восьмёрку?
Подсказка 2
Верно, для A₁ нужны 4 точки не выше (не ниже), чем горизонтальная средняя линия, для A₂ - 4 точки не правее (не левее), чем вертикальная средняя линия, для B - 4 точки в любой одной из указанных ранее областей. Теперь стоит задуматься о том, пересекаются ли данные множества или какая-то комбинация симметрий даёт другую симметрию?
Подсказка 3
Верно, если восьмёрка лежит в любых двух множества A₁, A₂, B, то она лежит во всех трёх, отсюда, вспоминая формулу включений-исключений, мы понимаем, что ответ уже очень близко, осталось только его расписать.
Назовем восьмеркой набор из клеток. Пусть
— множество восьмерок, симметричных относительной
,
— относительно
,
— относительно центра прямоугольника.
и
это средние линии прямоугольника.
Если выбрать какие-то точки в верхней половине прямоугольника, то остальные точки легко находятся в силу одной из
рассматриваемой симметрий относительно
и центра прямоугольника. Тогда количество элементов во множествах
будет
одинаковым. Тогда количество элементов в
будет равно количеству способов выбрать
очки в одной половине фигуры
относительно
Остальные
точки будут располагаются в другой половине. Тогда количество способов равняется
Если восьмерка лежит сразу в из
множеств
то она лежит и в третьей. Это значит, что пересечение двух множеств или
пусто, или пересекается с третьим.
Чтобы найти ответ надо найти количество элементов в объединении множеств. Используя формулу включений-исключений, получаем, что
где — означает количество элементов во множестве
— искомое число
Если точки, лежащие в одной из четвертей прямоугольника, принадлежат пересечению всех
множеств, то легко восстановить
исходную восьмерку, удовлетворяющую сразу трем симметриям. Тогда можно посчитать количество элементов в пересечении множеств. Это
будет количество способов выбрать
точки в одной из четвертей прямоугольника, образованной
и центром прямоугольника.
Следовательно, количество элементов равняется
Тогда посчитаем
Ошибка.
Попробуйте повторить позже
Даны 12 точек: 7 из них лежат на одной окружности в плоскости , а остальные 5 расположены вне плоскости
. Известно, что если
четыре точки из всех 12 лежат в одной плоскости, то эта плоскость —
. Сколько существует выпуклых пирамид с вершинами в данных
точках? (Пирамиды считаются различными, если их множества вершин различны.)
Подсказка 1
Среди всех возможных пирамид для нас принципиально различаются два случая: когда вершин 4 (тетраэдр) и больше. Посчитаем их по отдельности и затем сложим.
Подсказка 2
Количество всех возможных тетраэдров - количество способов выбрать 4 вершины, за исключением случаев, когда все точки лежат в одной плоскости. Из условия нам известно, что это возможно только когда все 4 вершины принадлежат плоскости 𝜶.
Подсказка 3
У n-угольной пирамиды, где n≥4 основание лежит в плоскости 𝜶, а вершина вне неё. Отдельно посчитаем способы выбрать основание и умножим на количество вариантов выбора вершин.
Подсказка 4
Количество способов выбрать основание находится как сумма числа сочетаний из 7 от 4 до 7, а вершину пирамиды можно взять пятью разными способами. Тогда нужно просто перемножить их и сложить найденное количество тетраэдров и n-угольных пирамид с n≥4
Посчитаем отдельно количество тетраэдров и выпуклых угольных пирамид с
Количество тетраэдров это количество способов выбрать точки, не лежащих одновременно в одной плоскости. Тогда количество
тетраэдров равняется
Найдем количество выпуклых угольных пирамид с
Основание такой пирамиды лежит в плоскости
а вершина —
вне
Тогда посчитаем количество оснований. Надо просуммировать все способы выбрать от 4 до 7 вершин без учёта
порядка
Для каждого из посчитанных оснований вершину пирамиды можно выбрать пятью способами, поэтому всего пирамид
Итоговый ответ
Ошибка.
Попробуйте повторить позже
Найдите все тройки целых чисел такие, что:
- ,
- число не кратно 3 ,
- число является квадратом некоторого простого числа,
- выполняется равенство .
Подсказка 1
Во-первых, давайте поймем, что если (a - c)(b - c) = p^2, то у нас есть не так много возможных случаев, так как a - c и b - c - это делители p^2, а их у нас всего +-1,+-p,+-p^2. Значит, у нас всего 6 вариантов. А как можно, используя условие, еще сократить количество вариантов, которые надо перебрать?
Подсказка 2
Можно, используя условие a < b, сказать, что a - c < b - c => у нас есть два варианта: первая скобка равна 1, вторая p^2 или первая равна -p^2, а вторая -1. Хорошо, у нас получилась совокупность систем. Как нам её решить?
Подсказка 3
Во-первых, надо избавиться от c (ни к селу, ни к городу это с) и получить, что a - b = p^2 - 1. При этом, a - b (то есть, p^2 - 1) не кратно 3. Но любой ненулевой остаток квадрата числа дает 1 по модулю 3. Значит, p кратно 3. Что тогда можно сказать про a, b, c? Как меняется наша система?
Подсказка 4
Это значит, что p = 3, а значит, a - b = 8; a^2 + b = 1000. Остаётся решить квадратное уравнение на а, которое получается из этой системы, и найти все с, которые подходят.
Второе условие можно записать как
По условию это значит, что
Тогда
Следовательно, возможны следующие случаи
Из обеих совокупностей можно получить из которого можно получить, что
не делится на
Так как и
не делятся на
а среди последовательных
чисел обязательно найдется число, делящееся на
то
делится на 3. Но
— простое, значит,
Получаем следующую систему
Из последнего уравнения получаем, что
Теперь найдем
Тогда может равняться
Ошибка.
Попробуйте повторить позже
Натуральные числа таковы, что
делится на
делится на
делится на
Найдите наименьшее
возможное значение произведения
Источники:
Подсказка 1
Чтобы произведение abc было минимальным, какие простые в своем разложении они могут иметь?
Подсказка 2
Да, каждое из чисел не должно иметь других простых, кроме 2, 3 и 5(но не обязательно, что каждое из них есть). Тогда давайте разложим каждое из чисел a, b, c на простые множители! Какие неравенства можно написать, если внимательно посмотреть на условие задачи?
Подсказка 3
Да, пусть x₁, x₂, x₃ – степени вхождения двойки в a, b, c соответственно, тогда будет верным: x₁ + x₂ ≥ 9; x₂ + x₃ ≥ 14; x₁ + x₃ ≥ 19. Что нужно сделать, чтобы понять в какой степени двойка входит в произведение abc?
Подсказка 4
Верно, нужно сложить эти степени и поделить на 2! Таким образом abc кратно 2²¹(поскольку если мы просто сложим степени двойки, то получим (abc) ²). Так, а дальше осталось сделать то же самое с 3 и 5 и привести пример, что каждая оценка достигается! Но какой случай может вызвать трудности?
Подсказка 5
Ну, если получается нецелое число, то мы его просто округляем до ближайшего целого, это не сложно. А вот, если пример не получается подобрать? Например, в случае с пятеркой: Если сделать также как и с двойками, то получится, что y₁+y₂+y₃ ≥ 27, но при этом y₁+y₃ ≥ 30 и y₂ ≥ 0. Тогда, нужно строить пример для y₁+y₂+y₃ ≥ 30. (y₁, y₂, y₃ – степени вхождения пятёрки в числа a, b, c соответственно)
Чтобы произведение было минимальным, числа
не должны иметь простых делителей, отличных от
и
Пусть
(показатели всех степеней — целые неотрицательные числа).
Тогда
Рассмотрим отдельно делимость на и
Из того, что
делится на
делится на
делится на
следует, что
|
Складываем полученные неравенства и получаем:
Покажем, что значение достигается. Для этого возьмём
Из того, что
делится на
делится на
делится на
следует, что
|
Складываем полученные неравенства и получаем:
Покажем, что значение достигается. Для этого возьмём
Из того, что
делится на
следует, что
Заметим, что
может равнятся
если, например,
Так как минимум каждой из трёх сумм не зависит от оставшихся, то и минимальное значение
равно
Ошибка.
Попробуйте повторить позже
На координатной плоскости дан параллелограмм с вершинами в точках ,
и
Найдите количество пар
точек
и
с целыми координатами, лежащих в этом параллелограмме (возможно, на границе) и таких, что
Источники:
Подсказка 1
Сначала может показаться, что задача какая-то жуть. Нужно находить количество пар точек, подходящие под какое-то странное условие... Но давайте понемногу "причёсывать" задачу и понимать, что от нас хотят. Попробуем хорошо преобразовать условие, данное на точки A и B. Какое действие хочется сделать, увидев в одной части координаты и точки A, и точки B?
Подсказка 2
Да, давайте перенесём координаты A в правую часть, а точки B — в левую. Число 33 тоже перенесём влево. Так как координаты у нас целые, то слева и справа получаются тоже какие-то целые значения. Пусть это будет целое число k. Что же теперь означает наше условие на координаты после того, как мы переписали их в удобном виде?
Подсказка 3
Верно, это две параллельные прямые, где вместо x и y мы подставляем координаты точек A и B. То есть мы можем записать уравнение прямых в общем виде с k. Что же нам теперь нужно сделать? Не забудем, что у нас есть ограничение на прямые самой границей параллелограмма. Идейная часть закончилась, теперь уже можно реализовывать техническую часть решения. Вспоминая вопрос задачи, что нам нужно теперь найти?
Подсказка 4
Верно, нам нужно найти в принципе количество целых точек x на прямых вида y=-3x+b. Это с помощью рассмотрения случаев, когда b делится на 3 и не делится, решается несложно(учитывая, конечно, снова ограничение по параллелограмму). Найдя уже до этого ограничения на k, остаётся только дело за комбинаторикой. То есть нам нужно для каждого k, выбрать на прямых нужные нам целые точки.
Запишем исходное условие на координаты точек и
в виде
Так как координаты точек и
являются целыми числами, то левая и правая части этого равенства могут принимать только целочисленные значения
Пара точек
и
с целочисленными координатами удовлетворяет условию тогда и только тогда, когда они лежат на
параллельных прямых
соответственно. Найдём подходящие значения параметра
Стороны и
параллелограмма лежат на прямых
поэтому они параллельны прямым, на которых лежат точки и
Эти прямые пересекают параллелограмм
при
|
Выясним количество точек с целочисленными координатами на каждой из прямых вида
Рассмотрим несколько вариантов:
Если
кратно трём (т.е.
то получаем прямую
При любом целом получится целое значение
а чтобы точка оказалась в параллелограмме нужно, чтобы
При любом этому неравенству удовлетворяет
целых значений
Если
не делится на 3, т.е. при
где
имеем
Учитывая, что получаем
Значит, этому неравенству удовлетворяет целочисленных значений.
Если (таких значений
то на каждой из двух прямых
можно выбрать по точек — всего
пар.
Если (таких значений
то на каждой из двух прямых можно выбрать по
точек — имеем
пар.
Итого получаем
Ошибка.
Попробуйте повторить позже
Сколько существует троек целых чисел таких, что они образуют в указанном порядке геометрическую прогрессию, а их
произведение
равно
?
Источники:
Подсказка 1
Для начала поймём, а какого вообще вида числа нам подходят? И какие условия на них накладываются?
Подсказка 2
Верно, каждое число при разложении на простые должно представляться в виде: 2ⁿ¹*3ⁿ². И при этом сумма степеней двоек всех трёх чисел должна быть равна 150 и аналогично с тройками! А теперь вспомним условие про геометрическую прогрессию, что можно сказать про число b?
Подсказка 3
Да, b вне зависимости от a и c равно 2⁵⁰*3⁵⁰(это получается из того, что степень b равна полусумме степеней a и c). А что в таком случае можно сказать про a и c?
Подсказка 4
Верно, степень двойки у чисел a и c можно выбрать 101 способом, так как при выборе степени двойки у a — степень c восстанавливается однозначно! И аналогично, для степеней тройки. Получается, что всего таких чисел 101². Но вот, все ли случаи мы учли?
Подсказка 5
Верно, a и c могут быть также отрицательными, тогда просто знаменатель прогрессии поменяется на противоположный!
Найдём сначала количество троек натуральных чисел. Пусть
где — целые неотрицательные числа. Тогда получаем
Числа составляют в указанном порядке геометрическую прогрессию тогда и только тогда, когда
,
откуда
Из полученных уравнений получаем систему
Посчитаем количество решений этой системы. Есть способ выбрать пару чисел
. Действительно,
можно взять любым
целым числом из отрезка
, после чего
определяется однозначно. Аналогично, пару
можно выбрать
способом.
Перемножая, получаем
способ.
Если рассматривать также отрицательные значения переменных, то можно заметить, что подходят все тройки чисел вида ,
где
положительны и составляют геометрическую прогрессию. Таких троек ровно столько, сколько и в первом случае, поэтому
окончательно имеем
тройки.
Ошибка.
Попробуйте повторить позже
Функция определена на множестве положительных рациональных чисел. Известно, что для любых чисел
и
из этого множества
выполнено равенство
и при этом
для любого простого числа
(
обозначает наибольшее целое
число, не превосходящее
Найдите количество пар натуральных чисел
таких, что
и
Источники:
Подсказка 1
Нам надо как-то искать ƒ(x/y). Какие a и b надо подставить, чтобы получить ƒ(x/y) и что-то еще, не очень плохое...
Подсказка 2
Разумно взять b=x/y, где x и y- натуральные числа. Возьмем тогда a=y, чтобы их произведение было натуральным числом. Тогда ƒ(y)+ƒ(x/y)=ƒ(y*x/y)=ƒ(x) ⇒ ƒ(x/y)=ƒ(x)-ƒ(y). Если ƒ(x/y)<0, то что можно сказать про ƒ(y/x)?
Подсказка 3
ƒ(y/x)=ƒ(y)-ƒ(x)=-(ƒ(x)-ƒ(y))=-ƒ(x/y)>0. Это означает, что количество пар (x; y) таких, что ƒ(x/y)<0 равно количеству пар (x; y) таких, что ƒ(x/y)>0. Тогда нам осталось лишь посчитать количество пар, в которых ƒ(x/y)=0. Как это сделать?
Подсказка 4
Мы знаем, что ƒ(x/y)=ƒ(x)-ƒ(y)⇒ нам достаточно посчитать количество пар (x;y) таких, что f(x)=f(y). Т.к. нам известны значения ƒ(x), если x- простое, то мы можем найти все ƒ(x), где x- любое натуральное число от 3 до 27, ведь x раскладывается в произведение простых. Сколько тогда будет пар (x; y) таких, что ƒ(x)=ƒ(y)?
Подсказка 5
Таких пар будет 167. Т.к. всего пар 25²=625, то искомых пар будет (625-167)/2=229.
Подставляя в равенство
, получаем
Если же для произвольных натуральных положить
, то получаем
Таким образом, чтобы вычислить значение функции в произвольной положительной рациональной точке нам достаточно значения
функции
для любого натурального числа.
Для простых чисел и единицы значения функции мы уже знаем. Для составных чисел значения функции могут быть найдены, если их
разложить на простые множители и воспользоваться равенством , например,
Аналогичным образом вычисляем значения функции для
и записываем их в
таблицу:
Поскольку то из
следует, что
Таким образом, количество пар натуральных чисел
таких, что
совпадает с количеством пар, для которых
Посчитаем количество пар
при которых
Ввиду того, что
нужно найти количество пар
из таблицы выше, для которых
Рассмотрим несколько случаев:
В данном случае имеется 25 вариантов.
а
В таблице есть 10 аргументов, при которых
Выбирая пару таких аргументов, первый можно
выбрать 10 способами, а второй – 9 способами. Значит, количество пар такого типа равно
а
Аналогично предыдущему пункту получаем
пары.
а
Здесь
пар.
a
Здесь
пары.
a
Здесь также
пары.
Итого, есть пар натуральных чисел
для которых
Всего имеется
пар,
поэтому тех, при которых
ровно
Ошибка.
Попробуйте повторить позже
Найдите количество семизначных чисел, обладающих следующим свойством: сумма остатков от деления числа на некоторые три последовательные степени числа десять равна 12345.
Источники:
Подсказка 1
Давайте сначала попробуем понять, а какие степени десятки вообще могли быть, попробуйте перебирать разные случаи и посмотреть, какие точно не могли выполнятся.
Подсказка 2
Верно, степень десятки либо равна 5, либо 6, иначе сумма остатков будет слишком большой или маленькой. Дальше удобно обозначить каждую цифру числа за переменную и записать сумму остатков от деления числа в столбик, тогда нам будет удобно рассуждать о возможных значениях цифр.
Подсказка 3
Не забывайте, что если сумма цифр при сложении в столбик равна 5, то она именно 5, потому как мы всегда берём остаток по модулю 10, когда считаем в столбик, поэтому надо рассматривать ещё случаи, когда она равна 15, 25.
Подсказка 4
Во всех случаях мы найдём какие-то условия на цифры, а некоторые останутся "свободными", т.е. мы можем подставить вместо них любую цифру, причём все эти случаи не пересекаются, и мы можем спокойно их складывать.
Пусть искомое число есть . Определим, какой может быть максимальная степень десятки, на которую происходит деление.
Возможны несколько случаев:
1) если максимальная степень десятки равна или меньше, то сумма остатков меньше
, что меньше
2) если максимальная степень десятки равна или больше, то сумма остатков не меньше
, что больше
3) максимальная степень десятки равна или
. Эти случаи возможны.
3.1) Пусть максимальная степень десятки равна . Тогда остатки от деления на
равны соответственно
,
и сумма остатков есть
где
Рассмотрим уравнение . Так как
, то либо
, либо
Если , то получаем
Поэтому делится на
При этом
, так как
Поэтому
, откуда
. То есть число имеет вид
. Таких чисел
Если , то
Поэтому либо , либо
. Если
, то
, что невозможно. Если
, то
, откуда
. То есть
число имеет вид
. Таких чисел 90.
3.2) Пусть максимальная степень десятки равна . Тогда остатки от деления на
равны соответственно
,
. И сумма остатков есть
где
Рассмотрим уравнение
Это равенство возможно только при . Значит,
, откуда
, то есть число имеет вид
. Таких чисел
Значит, искомое количество семизначных чисел есть
Ошибка.
Попробуйте повторить позже
Найдите количество треугольников периметра с целочисленными сторонами, у которых одна из биссектрис перпендикулярна одной из
медиан.
Источники:
Подсказка 1
Так, тут и комбинаторика, и геометрия, нужен наверняка рисунок. Что мы на нём можем заметить? Ищем равнобедренный треугольник и вспоминаем свойства биссектрисы!
Подсказка 2
С рисунком разобрались, с соотношениями тоже. Осталось вспомнить про неравенство треугольника и получить полную систему.
Подсказка 3
Не забудем проверить, что мы всё посчитали ровно по одному разу: можем ли мы упорядочить наши стороны?
Рассмотрим треугольник . Пусть его биссектриса
и медиана
пересекаются в точке
. В треугольнике
отрезок
является биссектрисой и высотой, поэтому треугольник равнобедренный,
.
Обозначим . Тогда
. По свойству биссектрисы
, поэтому если
, то
.
Сумма сторон треугольника равна периметру, т.е.
, откуда
, поэтому
. Учтём неравенство
треугольника:
Так как , то
На этом интервале содержится 24 целых значения .
Покажем, что никакая неупорядоченная тройка длин сторон треугольника не была посчитана более одного раза. Из двойного
неравенства
заключаем, что из сторон треугольника
и
сторона
— наименьшая. Тогда по заданному значению
вся тройка
восстанавливается однозначно: наименьшее из этих чисел равно
, ещё одно равно
, а третье равно
(где
-— периметр). Поэтому две различные неупорядоченные тройки длин сторон задаются различными значениями
.
Ошибка.
Попробуйте повторить позже
Найдите количество троек натуральных чисел , удовлетворяющих системе уравнений
Источники:
Подсказка 1
Из второго условия системы мы понимаем, что единственными простыми делителями чисел a, b, c могут быть лишь 2 и 3. Тогда можем представить эти числа как произведение степеней 3 и 2(a=2^α₁ * 3^α₂, b=2^β₁ * 3^β₂, c=2^γ₁ * 3^γ₂). Как тогда можно перезаписать условие системы через новые переменные?
Подсказка 2
С новыми переменными мы получаем, что max(α₁, β₁, γ₁) = 15, min(α₁, β₁, γ₁) = 1, max(α₂, β₂, γ₂) = 16, min(α₂, β₂, γ₂) = 1. Отлично! Теперь можно отдельно рассмотреть условия на α₁, β₁, γ₁ и условия на α₂, β₂, γ₂. Затем найти кол-во подходящих троек в каждом случае и, перемножив, получить ответ.
Подсказка 3
Для условий на α₁, β₁, γ₁, имеем, что какое-то из чисел равно 15, второе равно 1, а третье является любым целым числом от 1 до 15 включительно. Осталось только перебрать варианты наборов чисел и сложить кол-во случаев в них. Аналогично для α₂, β₂, γ₂.
Пусть (никаких других простых множителей числа
,
содержать не могут - иначе нарушается
второе условие системы). Отсюда
Учитывая данную в условии систему, получаем соотношения
Рассмотрим первую систему . Возможны следующие наборы чисел
:
набора (за счёт различных перестановок этих чисел);
— также три набора;
, где
есть
различных значений
и для каждого из них
перестановок — всего
вариантов.
Итак, есть способа выбрать тройку чисел
. Аналогично устанавливаем, что для выбора
есть
(
—
значений) способов. И поскольку один выбор осуществляется независимо от другого, то общее
количество способов равно
.
Найдено количество троек для степеней одного из простых чисел только в одном случае – 2 балла.
Получено одно или оба соотношения вида {︃ max (𝛼1; 𝛽1; 𝛾1) = 𝑘, min (𝛼1; 𝛽1; 𝛾1) = 1 и {︃ max (𝛼2; 𝛽2; 𝛾2) = 𝑚, min (𝛼2; 𝛽2; 𝛾2) = 1. и других продвижений нет – 1 балл за задачу (этот балл не суммируется с указанным выше).
Неарифметическая (комбинаторная) ошибка (вместо правила произведения применено правило суммы, некоторые случаи посчитаны дважды или пропущены и т.п.) – не более 1 балла за задачу.
Неверно решена «числовая часть» (из условия сделаны неверные выводы, например, утверждается, что одно из чисел должно равняться произведению 𝑝^𝑚𝑎𝑥 𝑞^𝑚𝑎𝑥 или 𝑝𝑞; используются неверные утверждения, например, НОД(𝑎, 𝑏, 𝑐) НОК(𝑎, 𝑏, 𝑐) = 𝑎𝑏𝑐) – 0 баллов за задачу.
Ошибка.
Попробуйте повторить позже
Дан квадрат, стороны которого равны Его стороны разбиты отмеченными точками на отрезки длины
(вершины исходного квадрата
тоже отмечены). Найдите количество четвёрок из отмеченных точек, являющихся вершинами прямоугольника.
Источники:
Подсказка 1:
Для начала давайте соберëм самую базовую информацию. Сколько всего отмечено точек? Как принципиально по-разному относительно квадрата может располагаться прямоугольник с вершинами в отмеченных точках?
Подсказка 2:
Получаем, что две соседние вершины прямоугольника могут быть как на одной стороне квадрата, так и на соседних. С первым случаем работать просто, со вторым — посложнее.
Подсказка 3:
Как определить, при каких условиях возможен прямоугольник из второго случая? Давайте рассмотрим такой прямоугольник и обратим внимание на прямоугольные треугольники, которые образовались. Что про них можно сказать?
Подсказка 4:
Получаем две пары равных треугольников, а между собой эти пары подобны!
Подсказка 5
Чтобы это использовать, попробуйте учесть и подобие, и тот факт, что все стороны квадрата равны 500. Теперь должно получиться посчитать количество способов!
Посчитаем число отрезков, на которые разбили квадрат: тогда число точек равно
Если фиксируем две точки на одной стороне квадрата, то две другие точки будут лежать на противоположной стороне, и прямоугольник будет определяться однозначно.
Рассмотрим случай, когда фиксируются две точки на соседних сторонах. Определим, когда в этом случае образуется прямоугольник:
Пусть сторона прямоугольника образует с квадратом угол Тогда получаем четыре подобных прямоугольных треугольника с
гипотенузами, являющимися сторонами прямоугольника, причём противоположные треугольники равны. Их острые углы равны
и
Обозначим катеты одного из треугольников за и
Тогда треугольники подобны с коэффициентом
Рассмотрим два соседних треугольника. Если у одного из них катет равен то у другого катет равен
Из подобия найдём вторую сторону:
Из равенства противоположных треугольников получаем уравнение:
Откуда:
Следовательно, либо либо
Теперь посчитаем все случаи:
1. Если фиксируем две точки на одной стороне, то точки можно выбрать на вертикальной и горизонтальной сторонах квадрата. При этом сам квадрат мы посчитали дважды. Общее количество таких прямоугольников:
2. Если фиксируем точки на соседних сторонах квадрата, первую точку (без учёта вершин квадрата) можно выбрать способами.
Тогда вторую точку можно выбрать двумя способами: либо
либо
Учтём также, что случай
был посчитан
дважды:
Сложив оба случая, получаем:
63246
Ошибка.
Попробуйте повторить позже
Найдите количество восьмизначных чисел, произведение цифр каждого из которых равно Ответ необходимо представить в виде
целого числа.
Источники:
Подсказка 1
Если произведение 8 цифр это 3375, то надо выяснить, какие это могут быть цифры вообще и сколько раз они встречаются в записи числа.
Подсказка 2
Ага, получилось два набора цифр: в одном пятерки, тройки и единички, в другом есть помимо них девятка. Находим, сколько в первом наборе способов поставить тройки, потом на оставшиеся места пятерки и тд, то же делаем для второго набора и понимаем, что эти наборы не пересекаются -> работает правило сложения
Разложим на множители.
Значит, либо в нашем числе есть
пятерки,
тройки и
остальные единицы, либо в нашем числе есть
пятерки,
девятка,
тройка и остальные единицы.
В первом случае способов выбрать места для пятерок можно способами, так как нам нужно выбрать три места из восьми для
пятерок. Затем выбрать места для троек
вариантов, а остальные места займут единицы, поэтому всего в этом случае
вариантов.
В втором случае способов выбрать места для пятерок так же выбрать место для тройки можно из оставшихся пяти, для
девятки — из оставшихся четырёх, а остальные места займут единицы, поэтому всего в этом случае
вариантов.
Итого вариантов.
Ошибка.
Попробуйте повторить позже
Монету подбрасывают раз (вероятности выпадения орла и решки в каждом броске одинаковы). Пусть
— вероятность того, что орёл
выпадет не меньше
раз, а
— вероятность того, что орёл выпадет меньше
раз. Найдите
.
Источники:
Подсказка 1
Попробуйте переформулировать указанные в условии вероятности, чтобы они звучали похоже. Как иначе выразить p-q.
Подсказка 2
Оказывается, что q — вероятность того, что решка выпадет не менее 36 раз! Какую вероятность нам тогда нужно подсчитать?
Подсказка 3
Верно, p-q — это вероятность того, что решка выпадет ровно 55 раз. Сколько вариантов последовательностей бросков, которые удовлетворяют этому условию?
Подсказка 4
Нам нужно выбрать 55 моментов, в которые упадёт решка ;)
В силу того, что выпадение орла и решки равновозможны, вероятность получить орлов равна вероятности получить
решек (т.е.
орлов); вероятность получить
орлов равна вероятности получить
решек (т.е. одного орла) и т.д. Обозначим вероятность, что выпало
ровно
орлов через
. Тогда
, а в силу сказанного выше,
.
Значит,
.
Посчитаем вероятность того, что орёл выпадает ровно раз при
бросках. Если обозначить выпадение орла единицей, а выпадение
решки нулём, то каждую последовательность из
бросков можно охарактеризовать последовательностью цифр из нулей и единиц.
Вероятность получить любую из таких последовательностей равна
. Нас устроят все те последовательности событий, которые содержат
ровно
единиц. Их количество равно
(выбираем из имеющихся
позиций
позиций для единиц без учёта порядка, после чего
остальные позиции заполняются нулями). Значит, вероятность получить хотя бы одну такую последовательность равна
. Это и
есть
.
Ошибка.
Попробуйте повторить позже
Бросили игральных костей (кубиков с цифрами от
до
на гранях, вероятность выпадения каждой из граней одна и та же) и
посчитали сумму выпавших чисел. Какая из вероятностей больше: того, что сумма больше
, или того, что сумма не больше
Источники:
Подсказка 1!
Заметим одну важную вещь! Как изменится сумма чисел, выпавших на всех костях, если вместо каждого числа выпадет его "дополнение до 7"? То есть вместо 1 - 6, 2 - 5 и так далее?
Подсказка 2!
Верно, если сумма была S, то сумма нового набора - 490 - S! Таким образом, все наборы ( в частности, наборы с суммой 140 и 350) разбиваются на пары! А что это значит в контексте вероятности?
Подсказка 3!
Что вероятность выпадения набора с суммой S и c суммой 490 - S одинакова! Отлично, осталось внимательно теперь рассмотреть вероятности, о которых говорится в условии)
Результат броска кубиков можно описать набором из 70 чисел от 1 до 6. Рассмотрим какой-либо такой набор. Если каждое из чисел набора
заменить с на
, получим новый набор, состоящий из чисел от 1 до 6. При этом если сумма чисел в исходном наборе была
, то
она станет равной
То есть каждому набору с суммой
мы можем поставить в соответствие набор с суммой
Так как , то количество наборов с суммой больше 350 равно количеству наборов с суммой меньше 140. Отметим также,
что все наборы равновероятны. Значит, вероятность выбросить больше 350 равна вероятности выбросить меньше 140. Но вероятность
выбросить не больше 140 очков выходит больше выше рассмотренных, так как добавляются способы, в которых сумма составляет ровно 140
очков. Поэтому больше вероятность того, что сумма не превосходит 140.
того, что сумма не больше