Тема Физтех и вступительные по математике в МФТИ

Физтех - задания по годам .16 Физтех 2024

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела физтех и вступительные по математике в мфти
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 21#135357Максимум баллов за задание: 7

В треугольнике ABC  на медиане AM  и биссектрисе CL  как на диаметрах построены окружности Ω  и ω  соответственно, пересекающиеся в точках P  и Q.  Отрезок PQ  параллелен высоте треугольника ABC,  проведённой из вершины B.  Окружность  Ω  пересекает сторону AC  повторно в точке N.  Найдите длины сторон AC  и BC,  если AB = 10,  AN = 8.

Источники: Физтех - 2024, 10.7 (см. olymp-online.mipt.ru)

Показать ответ и решение

Пусть T  — точка пересечения AM  и CL,  O
 1  и O
 2  — середины этих отрезков соответственно. Тогда O O ⊥ PQ,
 1 2  так как PQ  параллелен высоте, проведенной к AC,  то AC ∥O1O2.  Треугольники TO1O2  и TAC  подобны по двум углам. Обозначим TO1 =x,  TO2 = y,     AO1
k= TO1.  Тогда

TA = (k +1)x

TC = (k+1)y

Поскольку O1  и O2  — середины AM  и CL,

MT = AO − TO  =(k− 1)x
       1    1

LT =CO2 − TO2 = (k− 1)y

Значит, LT :TC = MT :TA,  и треугольники LMT  и CAT  подобны, откуда LM ∥ AC.  Следовательно, L  — середина стороны AB,  отрезок CL  является в треугольнике ABC  медианой и биссектрисой, поэтому треугольник равнобедренный (AC = BC).

PIC

Пусть окружность Ω  пересекает сторону AB  в точке K,  а сторону BC  вторично пересекает в точке V.  Угол MKA  прямой, поскольку AM  — диаметр окружности, поэтому MK  — средняя линия треугольника CBL.  Отсюда

BK = AB-= 5
      4   2

Пусть CM = c,  V M = t.  Тогда CA = CB = 2c,  и по теореме о двух секущих получаем

CM ⋅CV = CN ⋅CA

(c+t)⋅c= (2c− 8)⋅2c

BM ⋅BV = BK ⋅BA

(c− t)⋅ 5= 5 ⋅10
      2  2

PIC

Из первого равенства следует, что t=3c− 16.  Подставляя во второе равенство, имеем

(16− 2c)⋅c= 25

   8± √14
c= ---2--

Отсюда                 √--
BC = AC = 2c= 8± 14.  Но так как AC > AN = 8,  подходит только             √--
BC =AC = 8+  14.

Ответ:

 8+ √14

Рулетка
Вы можете получить скидку в рулетке!