Тема ПВГ (Покори Воробьёвы Горы)

Планиметрия на ПВГ

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела пвг (покори воробьёвы горы)
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#85553

В остроугольном треугольнике PVG  обозначили точку пересечения высот через H  , центр описанной окружности через O  . Площади треугольников OHP  и OHV  равны 5 и 3 соответственно. Найдите площадь треугольника OHG  .

Источники: ПВГ - 2024, 11.4 (см. pvg.mk.ru)

Показать ответ и решение

В точке H  пересекаются три высоты треугольника. Так как O  — центр описанной окружности, то в точке O  пересекаются серединные перпендикуляры треугольника. Пусть точка M  — середина стороны PV  , тогда GM  медиана. Точка T  — точка пересечения медианы и прямой OH  .

PIC

Треугольники MOT  и GHT  подобны (следует из параллельности прямых MO  и HG  , которые обе перпендикулярны прямой P V  ). Так как HG = 2⋅MO  (этот факт из школьной геометрии хорошо известен как "свойство ортоцентра"), то коэффициент подобия равен 2. Значит, GT :TM = 2:1  , то есть медиана GM  делится точкой T  в отношении 2:1  . Это означает, что T  - точка пересечения медиан треугольника P VG  . Поэтому площадь △OHG  в 2 раза больше площади △OHM  .

Так как M  — середина P V  , то

S      = S△OHP-+S△OHV--⇒ S     = S     + S    .
 △OHM          2          △OHG    △OHP    △OHV

Здесь ошибкой был бы вывод о том, что, значит, S      =5+ 3= 8
 △OHG  . Дело в том, что выше доказано, что одна из этих трех площадей является суммой двух других. Но какая именно, зависит от рисунка, который мы сделаем. Важно, где прямая OH  пересекает стороны треугольника. Если треугольник P VG  правильный, то точки O  и H  совпадают и указанные в условии задачи три площади вырождаются (это здесь невозможно, так как дано, что площади равны 3 и 5). Если прямая OH  проходит через любую вершину треугольника, то тогда одна из трех площадей равна 0 , а две другие — ненулевые, но равны между собой (тоже не наш случай). Если же прямая OH  пересекает две стороны (рассмотренный выше случай), то мы доказали, что одна из этих трех площадей (в одном случае это OHG  , в другом — OHP,  в третьем — OHV )  является суммой двух других.

Поэтому получаем либо 5+ 3= x  (то есть x= 8  ), либо 3+x =5  (то есть x =2  ), либо 5 +x =3  (что невозможно).

Ответ: 8 или 2

Ошибка.
Попробуйте повторить позже

Задача 2#67954

В треугольнике ABC  биссектриса BE  и медиана AD  равны и перпендикулярны. Найдите площадь треугольника ABC,  если      √--
AB =  26.

Источники: ПВГ-2023, 10.4 (см. pvg.mk.ru)

Показать ответ и решение

Пусть BE = AD = 2a,AB = c,∠ABC = β,AD ∩BC = F.  Так как BF  — высота и биссектриса треугольника BDA,  то этот треугольник равнобедренный, поэтому BA = BD =c,AF =F D =a

PIC

Первое решение.

По теореме Менелая для треугольника EBC  и прямой AD :

EF  BD  CA
FB-⋅DC-⋅AE-= 1

Так как BD = DC = 2c  и так как по свойству биссектрисы CAAE-=1+ CAEE-= 1+ CBBA-=1 + 2cc = 3,  то остаётся соотношение

EF- ⋅3 =1  ⇐ ⇒  EF = a,FB = 3a
F B                 2      2

Тогда по теореме Пифагора для треугольника AFB :

a2+(3a)2 = 26
     2

   √-
a=  8

Тогда      ∘ --       ∘--
sinβ2 =  286,cosβ2 =  1286  и по формуле синуса двойного угла площадь треугольника можно выразить как

                             ∘ ---∘ ---
S    = 1 ⋅c⋅2c⋅2sin βcosβ =26⋅2⋅ 8-⋅  18= 2⋅12= 24
 ABC  2          2   2         26   26

Второе решение.

По формуле для длины биссектрисы:

    2 ⋅2c⋅c   β
2a= -2c+c-cos2;

3a = c⋅cosβ.
 2       2

Из треугольника BDF  получим, что

        β
a= c⋅sin 2

Поделим эти уравнения друг на друга и получим, что

  β   2
tg2 = 3

Тогда из основного тригонометрического тождества:   β         β
cos2 = √313,sin 2 = √213.  Значит, из формулы синуса двойного угла sinβ = 1123.  Наконец,

SABC =c2sinβ =24
Ответ: 24

Ошибка.
Попробуйте повторить позже

Задача 3#71440

Среди всех вписанных четырёхугольников найдите четырёхугольник ABCD  с наименьшим периметром, в котором AB = BC =CD  и все попарные расстояния между точками A,B  , C  и D  выражаются целыми числами. Чему при этом равен радиус описанной вокруг ABCD  окружности?

Источники: ПВГ-2022, 11.3 (см. pvg.mk.ru)

Показать ответ и решение

Так как хорды AB  и CD  равны, то равны и дуги AB  и CD,  а значит, равны вписанные углы CAD  и BCA.  Это означает, что BC ∥ AD  , и ABCD  — трапеция с равными боковыми сторонами AB  и CD  . Пусть AB =BC = CD = a,AD  =b,  AC = BD =c.

PIC

Высоту h= BH  выразим по теореме Пифагора

        (    )2
h2 = a2− b−-a
          2

c2 = h2+ (a+-b)2 = a2− (b−-a)2+ (a-+b)2 =a2+ ab
           2            2        2

Заметим, что это же можно было получить с помощью теоремы Птолемея:

AB ⋅CD + BC⋅AD = AC ⋅BD ⇔ a2+ab= c2

Таким образом,

2
c =a(a+ b),

где a,b,c  — натуральные числа. Кроме того, 3a> b,  то есть b≤ 3a− 1.

  • Если a =1,  то b∈[1;2],  и уравнение c2 = 1(1+ b)  целых решений не имеет.
  • Если a =2,  то b∈[1;5],  и уравнение c2 = 2(2+ b)  целых решений не имеет.
  • Если a =3,  то b∈[1;8],  и уравнение c2 = 3(3+ b)  целых решений не имеет.
  • Если a= 4,  то b∈ [1;11],  и уравнение c2 =4(4+ b)  имеет единственное целое решение b= 5,  c= 6.  Тогда периметр равен 3a+ b=17.
  • При a ≥5  периметр будет больше 17, так как если 3a+ b≤17,  то a =5.  Но тогда или b= 1,   2
c = 30,  или      2
b= 2,c =35  — то и другое невозможно.

Итак, AB = BC = CD =4,AD = 5,AC = BD = 6,  периметр равен 17. Тогда высота трапеции равна ∘ ---------  √ -
  42− (5−24)2 = 327 ,  синус угла при основании равен sinA= 3√7 = 3√7,
      2⋅4   8  а искомый радиус находится по теореме синусов

2R = BD--= 6⋅√8 ⇒ R= √8-
     sinA   3 7        7
Ответ:

√8-
  7

Ошибка.
Попробуйте повторить позже

Задача 4#94092

Бумажный квадрат площади 17 согнули по прямой, проходящей через его центр, после чего соприкасающиеся части склеили. Найдите максимально возможную площадь получившейся бумажной фигуры.

Источники: ПВГ - 2021, 11.5 (см. pvg.mk.ru)

Показать ответ и решение

Обозначим сторону квадрата через a.  Пусть прямая отсекает от стороны квадрата AD  отрезок AP =x < a.
        2  Найдём AQ  .

PIC

Обозначим ∠RP S = ∠RP Q= α,∠QPA = β  . Поскольку из треугольника PRS  (здесь S  это проекция точки R  на основание AD  ) находим tgα =a−a2x  , то

tg(2α) =-a(a−-2x)
      2x(x− a)

                     a(a−-2x)
AQ= x⋅tgβ = xtg(− 2α )= 2(a − x)

Следовательно катеты прямоугольных треугольников равны x  и a(a−2x)
2(a−x)-  . Откуда искомая площадь равна

2
a2-+ ax(2(aa−−-2xx))

С помощью производной можно получить, что максимум функции

      x(a-− 2x)
f(x)=  (a− x)

достигается при    a(2− √2)
x= ---2--  , что соответствует углу

    π     3π    3π
β = 4,2α = 4-,α= -8 .
Ответ:

 17(2 − √2)

Ошибка.
Попробуйте повторить позже

Задача 5#39871

Высота, проведённая к гипотенузе прямоугольного треугольника, делит гипотенузу на два отрезка, один из которых равен 16  . Найдите длину второго отрезка, если радиус вписанной в этот треугольник окружности равен 5.

Источники: ПВГ-2020, 10 класс

Показать ответ и решение

PIC

Пусть это △ABC, ∠B =90∘ , BH  — высота и AH = 16  , второй отрезок CH = t2  . Тогда высота к гипотенузе      √-------
BH =  AH ⋅CH = 4t  .

С одной стороны,

                       2
SABC = BH-⋅AC-= 4t⋅(16+t-).
         2          2

С другой стороны, используя равенство AB +BC = AC +2r

S   = PABC-⋅r= r⋅(2r+2AC-)= 5(t2+ 21).
 ABC     2          2

Тогда для t  получим кубическое уравнение

  3   2                 2
2t − 5t + 32t− 105 =(t− 3)(2t + t+35)= 0

Поскольку вторая скобка не имеет корней, то t= 3  =⇒   CH =t2 = 9  .

Ответ:

 9

Ошибка.
Попробуйте повторить позже

Задача 6#45588

Серединный перпендикуляр к биссектрисе AD  треугольника ABC  пересекает прямую BC  в точке E  . Найдите BC  , если AB :AC = 3:2  и CE =3  .

Источники: ПВГ-2020

Показать ответ и решение

PIC

В силу свойства биссектрисы BD  =3x,CD =2x  . Далее заметим, что ∠EDA  =∠B + ∠BAD = ∠EAD = ∠CAD + ∠EAC   =⇒   ∠EAC = ∠B  (помним, что △AED  равнобедренный). Отсюда △ECA ∼ △EAB  , то есть

EC-= EA-  ⇐⇒   --3--= 3+-2x  ⇐⇒   4x2− 3x= 0 =⇒   x= 3  =⇒   BC = 15
AE   EB        3+ 2x   3+ 5x                          4            4
Ответ:

 15
 4

Ошибка.
Попробуйте повторить позже

Задача 7#46085

Точка O  является центром окружности, касающейся двух сторон треугольника ABC  , и лежит на стороне BC  . Найдите радиус окружности, описанной около треугольника ABC  , если            3
OB = 2,OC =2,AC = 3  .

Источники: ПВГ-2020

Показать ответ и решение

PIC

Центр O  вписанной в угол ABC  окружности лежит на биссектрисе угла A  . Отсюда по свойству биссектрисы AB = BCOO-⋅AC =4  . Мы знаем все стороны треугольника, потому можем использовать теорему косинусов для ∠A =α

                                                √--
49 =32+ 42− 2 ⋅3 ⋅4 cosα =⇒   cosα = 17-  =⇒  sinα = 7-15
 4                               32              32

Откуда R= -BC- = √8-
   2sinα    15  .

Ответ:

√8--
  15

Ошибка.
Попробуйте повторить позже

Задача 8#45074

В равнобедренном треугольнике ABC  на высоте BH  , равной основанию AC  , как на диаметре построена окружность, пересекающая боковую сторону BC  в точке F  . Каково отношение площади треугольника FCH  к площади треугольника ABC?  Какая часть площади треугольника ABC  находится внутри окружности?

Источники: ПВГ-2019, 11.4 (см. rsr-olymp.ru)

Показать ответ и решение

PIC

Введем обозначения: BH = 2a,HC =a,BF = y,F C = x  . Поскольку угол BF H  - прямой, то по теореме об соотношениях в прямоугольном треугольнике для двух катетов BH,HC  будем иметь:

{
   a2 = x(y+ x), ⇒ y= 4⇒  y = 4x
   4a2 =y(x+ y)   x

Из отношения площадей треугольников с общим углом находим ответ на первый вопрос:

SFSCH- = 2a(axx+-y) = 110
  ABC

Из теоремы Пифагора для △BHC  имеем 5a2 = 25x2 =⇒   x= √a
                   5  . Далее пусть O  — центр окружности из условия, а также ∠HOF  =α  , запишем теорему косинусов для △BOF

(-4a-)2   2    2            3        4
 √5-  = 2a +2a cosα ⇒ cosα = 5 ⇒ sin α= 5

Обозначим площадь сектора HOF  через S1  . Тогда     1 2      4
S1 = 2a ⋅arcsin 5  . Внутри окружности у треугольника два таких сектора. Кроме того, внутри окружности два треугольника одинаковой площади (симметрия относительно BH  ). Найдем площадь S2             1       2
△BOF  :S2 = 2a2sinδ = 5a2  . Тогда ответ на второй вопрос будет следующий: 2(S +S)   1(    4  4)
-S1ABC2-= 2 arcsin5 +5 .

Ответ:

-1,  1(arcsin4 + 4)
10   2     5  5

Ошибка.
Попробуйте повторить позже

Задача 9#68256

В равнобедренном треугольнике ABC  на высоте BH  , которая в полтора раза больше основания AC  , как на диаметре, построена окружность, пересекающая боковую сторону BC  в точке F  . Каково отношение площади треугольника FCH  к площади треугольника ABC?  Какая часть площади треугольника ABC  находится внутри окружности?

Показать ответ и решение

PIC

Введем обозначения: по условию высота BH  в полтора раза больше основания AC  , тогда пусть BH  =3a, HC = HA = a, BF = y  и FC = x  . Поскольку угол BF H  — прямой(опирается на диаметр), то △F HC ∼ △BHC, △BF H ∼ △BHC  , тогда из отношений подобных сторон имеем

{
  FHCC-= HBCC-
  BBFH-= BBHC-

{
  a2 = x(y+ x),
  9a2 =y(x+ y)

=⇒  y =9x

Из отношения площадей треугольников FCH  и ABC  с общим углом HCF  находим ответ на первый вопрос:

SFCH      12 ⋅a⋅x⋅sin∠HCF
SABC-= 1⋅(x+-y)⋅2a⋅sin∠HCF--=
       2

= ---x-- = 1-
  2(x+ y)   20

По теореме Пифагора для треугольника BHC  выразим x  через a:

 2    2     2          -a-
a + 9a = 100x   =⇒   x= √10.

Пусть O  — центр окружности, описанной вокруг треугольника BHF  . Обозначим α= ∠HOF  . Тогда по теореме косинусов для треугольника BOF  , в котором

∠BOF = 180∘− α  и BO = OF = 3a2-  как радиусы:

BF2 = BO2 +OF 2− 2BO⋅OF ⋅cos∠BOF

( 9a )2    ( 3a)2     9a2                 4            3
  √10  = 2⋅  2-  +2 ⋅4--cosα  =⇒   cosα = 5  =⇒  sinα= 5.

Обозначим площадь сектора HOF  через S1  . Тогда по формуле кругового сектора

         2
S1 = 1⋅ 9a-⋅arcsin 3
     2  4       5

Пусть P  — точка пересечения окружности и стороны AB  . Тогда внутри окружности, в силу симметрии, два таких сектора равной площади: HOF  и HOP  . Кроме того, внутри окружности два треугольника одинаковой площади: SBOP = SBOF =S2  . Теперь найдем S2

S2 = 1 ⋅ 9a2-sinα= 27a2
    2   4       40

Тогда ответ на второй вопрос будет следующий:

           2(9a2⋅arcsin 3+ 27a2)
2-(S1+-S2)= ---8-----2-5--40--=
  SABC             3a

  3(     3   3)
= 4  arcsin5 + 5
Ответ:

-1; 3(arcsin3+ 3)
20  4     5  5

Ошибка.
Попробуйте повторить позже

Задача 10#45071

В треугольник ABC  , в котором сумма сторон AC  и BC  в 9
5  раз больше стороны AB  , вписана окружность, касающаяся сторон BC,AC  и AB  в точках M,N  и K  соответственно. Отношение площади треугольника MNC  к площади треугольника ABC  равно    r  . Найдите при данных условиях:

а) наименьшее значение r  ;

б) все возможные значения r  .

Источники: ПВГ-2018, 11.4 (см. pvg.mk.ru)

Показать ответ и решение

PIC

а) По формуле отрезков касательных для вписанной окружности имеем MC = NC = p− c, p = a+b2+c, a,b,c  — стороны BC, AC,AB  треугольника, отсюда

            2          2        2
SMNC-= (p−-c)-= (a+-b−-c)-= 4(a+-b)-.
SABC     ab       4ab       81ab

Используем неравенство о средних a+ b≥ 2√ab-  (знак равно достигается, только в случае a =b  ), то 16(a+b)2 ≥ 4⋅4ab= 16
  81ab    81ab  81  .

б) Перепишем отношение площадей в следующем виде:

SMNC-= 4(a+b)2= -4( a+ 2+ b)= -4 (t+ 1+ 2)
SABC     81ab    81  b     a   81     t

где    a
t= b  . По неравенству треугольника a+ b> c,a+ c> b,b+ c> a  . Учитывая то, что    5(a+b)-
c=  9  последние неравенства равносильны 7  a  2
2 > b > 7  . Отсюда    2 7
t∈(7,2)  . Функция      4 (  1   )
f(t)= 81-t+ t +2 монотонно убывает на (0;1)  и возрастает на (1;+∞ )  , она симметрична относительно 1  , откуда   2     7   2
f(7)= f(2)= 7  . В итоге находим множество значений            16         7   2
f(t) : f(1) =81 ≤f(t)≤ f(2)= 7  на отрезке  2 7
(7,2)  . Любое промежуточное значение можно задать выбором a  и b  .

Ответ:

а) 16
81

б) 16 2
[81;7)

Ошибка.
Попробуйте повторить позже

Задача 11#105110

Внутри треугольника ABC  взята такая точка D,  что ∠ABD = ∠CBD = 40∘,  ∠ACD = 20∘,∠CAD = 30∘.  Найдите:

a) углы ∠BAD  и ∠BCD;

б) расстояние между центрами окружностей, описанных около треугольников ABC  и BCD,  если BC = 3.

Источники: ПВГ 2018

Показать ответ и решение

a)

PIC

По теореме о сумме углов в треугольнике           ∘   ∘    ∘    ∘
∠ADC  =180 − 20 − 30 = 130 .  Пусть I  — центр вписанной в треугольник ABC  окружности. Тогда угол между биссектрисами         ∘  1         ∘
∠AIC =90 + 2∠ABC = 130 .  Получается, что из точек D  и I  отрезок AC  виден под одинаковым углом, тогда они лежат на одной окружности вместе с A,C  . При этом из условия следует, что ещё они обе лежат на одной прямой (на биссектрисе угла ABC  ), поэтому либо совпадают, либо являются противоположными вершинами прямоугольника (вписанного параллелограмма) ADCI  . Но так как 130∘ ⁄=90∘,  то может быть только случай D≡ I.  Следовательно, ∠BAD  =∠CAD  =30∘ и ∠BCD  =∠ACD  = 20∘ .

Замечание. Для доказательства D = I  можно было также воспользоваться условием, что точка D  дана внутри треугольника, и упростить часть рассуждений.

б)

PIC

Радиус окружности, описанной вокруг треугольника ABC  , равен

--BC-- = -3√--=√3.
2sin60∘   223

Но

∠BDC = 180∘− 40∘− 20∘ =120∘,

поэтому радиус окружности, описанной вокруг треугольника BCD  , также равен

--BC---  √-
2sin120∘ = 3.

Значит, их общая хорда BC  пересекает отрезок между центрами в его середине, а длина этого отрезка равна  ∘---9   √-
2 3 −4 =  3  .

Ответ:

а) 30∘ и 20∘

б) √-
 3

Ошибка.
Попробуйте повторить позже

Задача 12#79927

Медиана AM  треугольника ABC  перпендикулярна его биссектрисе BL.  Найдите площадь треугольника ABM  , если площадь треугольника ABL  равна 10.

Источники: ПВГ 2017

Показать ответ и решение

PIC

Биссектриса треугольника ABM  служит его высотой, поэтому AB =  BM = MC ≡ x,  а также AL :LC =AB :BC = 1:2,  откуда AL = y  и CL= 2y.  Далее, имеем

SABM-= -SACM- = -x⋅3y-= 3
SABL   SBCL∕2   2x ⋅2y∕2  2

       3
SABM = 2 ⋅10= 15
Ответ: 15

Ошибка.
Попробуйте повторить позже

Задача 13#79928

В прямоугольном треугольнике ABC  из вершины прямого угла C  проведёна высота CK  . Периметр треугольника ABC  равен 13, а периметр треугольника BCK  равен 5. Найдите периметр треугольника ACK.

Источники: ПВГ 2017

Показать ответ и решение

PIC

Треугольники ABC  , ACK  и CBK  подобны. Периметры подобных треугольников относятся так же, как соответствующие стороны:

PACK-= AC-,PCBK-= CB-.
PABC   AB  PABC   AB

По теореме Пифагора

(AC)2+ (CB)2= 1,
(AB)2  (AB)2

откуда

PC2BK + P2AKC = P2ABC.

Поэтому PAKC = 12.

Ответ: 12

Ошибка.
Попробуйте повторить позже

Задача 14#91251

Продолжение биссектрисы AD  треугольника ABC  пересекает окружность, описанную вокруг этого треугольника в точке E.  Найдите площадь треугольника ABC,  если BC = a,∠BAC = α,AE = d.

Источники: ПВГ 2017

Показать ответ и решение

Пусть AH  — высота треугольника ABC,φ= ∠DAH  , тогда AH = AD cosφ  и площадь треугольника ABC  равна

1         1
2BC ⋅AH = 2BC ⋅AD cosφ

Пусть O  — центр описанной окружности радиуса R.  По теореме синусов для треугольника ABC  :

     a
2R = sinα-

PIC

Треугольники DBE  и ABE  подобны, так как имеют общий угол с вершиной в точке E,  а углы ∠CBE  и ∠EAB  равны как опирающиеся на равные дуги, ибо AE  — биссектриса ∠BAC,  следовательно,

AE-= BE-
BE   DE

DE = BE2-
      AE

По теореме синусов для треугольника ABE  получаем

          α-
BE = 2Rsin 2

Значит,

     4R2sin2 α
DE = ---d---2

Отсюда

AD = AE − DE = d− 4R2sin2-α2= d2−-4R2sin2 α2
                     d           d

Пусть EF  — диаметр описанной окружности, тогда EF = 2R  и EF  перпендикулярен BC,  ибо E  — середина дуги BEC.  Так как EF  и AH  перпендикулярны BC  , то они параллельны и φ= ∠DAH = ∠AEF,  а так как угол ∠EAF  опирается на диаметр, то

      AE-  d--
cosφ = EF = 2R

Значит,

                  2    2  2 α   2    2  2 α
AH = AD cosφ = d-⋅ d-− 4R-sin-2= d-−-4R-sin-2-
              2R       d            2R

В итоге площадь треугольника ABC  равна

          a(d2− 4R2sin2 α ) a(d2− -a22-sin2 α)
12BC ⋅AH = -----2R-----2-= ------sin2aα---2--=
                                sinα

= 1tg α(4d2cos2 α-− a2)
  4  2        2
Ответ:

 1 ⋅tg α⋅(4d2cos2 α-− a2)
4    2        2

Ошибка.
Попробуйте повторить позже

Задача 15#51852

Серединами оснований BC  и AD  трапеции ABCD  являются точки K  и L  соответственно. Известно, что AD = 10⋅BC.  На боковых сторонах AB  и CD  взяты, соответственно, точки M  и N  , так что прямая MN  параллельна основаниям трапеции. При каком значении отношения AM :MB  сумма площадей треугольников BKN  и MNL  будет наибольшей?

Источники: ПВг-2016, 11.3 (см. pvg.mk.ru)

Показать ответ и решение

Введем обозначения: S     = S,AD =k ⋅BC (k> 1),BC = a,
 ABCD  высота трапеции ABCD − h,x = MB.
            AB  Тогда S = a+kah,
     2  откуда     -2S
ah= 1+k  Получаем:        1  a     -xS--
SBKN = 2 ⋅ 2 ⋅hx= 2(1+k).  Так как MN  =x(k− 1)a +a,  то

PIC

SMNL = a(x(k−-1)+-1)⋅(1− x)h= S(x(k-− 1)+-1)(1−-x)
            2                    1+ k
       SBKN +SMNL = ---S-- (2x2(1 − k)+ x(2k− 3)+2)
                    2(1+ k)

Функция f(x)= 2x2(1− k)+x(2k− 3)+ 2  имеет максимум при x0 =-2k−-3
    4(k− 1)  Если k= 10,  то x0 = 17,
    36  откуда AM :MB  =19 :17.

Ответ:

 19:17

Ошибка.
Попробуйте повторить позже

Задача 16#90131

В окружность с центром O  вписан четырехугольник ABCD  , диагонали AC  и BD  которого пересекаются в точке M  , причем AM  =4,AB = 6  . Определите, какой может быть наименьшая длина диагонали BD  , если известно, что стороны AB  и AD  равноудалены от точки O  .

Источники: ПВГ 2016

Показать ответ и решение

Из равноудалённости сторон AB  и AD  от точки O  вытекает их равенство. Следовательно равны углы ∠ACD  = ∠ADB = ∠ABD  . Таким образом, треугольники ABM  и ACB  подобны. Откуда    2
AB  = AM ⋅AC  , т.e. AC = 9  , а следовательно, MC = 5  . Так как DM  ⋅MB = CM ⋅MA = 5⋅4  , то DM = 5x,MB = 4∕x.  Следовательно,

         4   (    4)        2   √ -
BD = 5x+ x = 5 x + 5x ≥ 5⋅2⋅√5-=4  5,

применяя a2+ b2 ≥2ab  . Остаётся заметить, что данный случай реализуется, когда AC  проходит через центр окружности.

PIC

Ответ:

 4√5

Ошибка.
Попробуйте повторить позже

Задача 17#63886

В треугольнике ABC  стороны AB  и BC  соответственно равны 3 и 1.  Биссектриса BD  равна √2.  Найдите угол BAC.

Источники: ПВГ 2014

Показать ответ и решение

PIC

По свойству биссектрисы AD = 3x,CD = x  для некоторого x  . Запишем теоремы косинусов для △ABC  и △ABD  :

         2
1 =9+ 16x − 24xcos∠A (1)

       2
2= 9+9x − 18xcos∠A  (2)

3⋅(1)− 4⋅(2): −5= −9+ 12x2

x= 1∕√3

Тогда из (1)

          16
cos∠A = 9+-3-−-1= -40√-
        24⋅√13    24 3

             5
∠BAC = arccos3√3
Ответ:

arccos-5√-
    3 3

Ошибка.
Попробуйте повторить позже

Задача 18#79929

Треугольник ABC  вписан в окружность с центром в точке O.  Биссектрисы внутренних углов треугольника при вершинах A  и B  пересекают описанную окружность в точках A1  и B1  соответственно. Угол между биссектрисами равен   ∘
60 .  Длина стороны AB  равна 3. Найдите площадь треугольника A1B1O.

Источники: ПВГ 2014

Показать ответ и решение

PIC

Угол между биссектрисами равен углу при вершине C,∠C =  60∘.  Точки A1  и B1  лежат на перпендикулярах к сторонам треугольника, опущенным из точки O  — центра описанной окружности. Отсюда следует, что угол ∠A1OB1 =120∘.  Радиус окружности можно найти по теореме синусов            √-
R= 2sin360∘ = 3.  Тогда площадь искомого треугольника равна      √-√-         √-
S = 0,5 3 3 sin120∘ = 343

Ответ:

 3√3
 4

Ошибка.
Попробуйте повторить позже

Задача 19#92072

В треугольнике ABC  биссектрисы AA  ,BB
   1   1  пересекаются в точке O  . Известно, что 2⋅AO =7 ⋅OA  ,BO = 2⋅OB
           1          1  . Найдите отношение высоты, опущенной из точки A  , к радиусу вписанной в треугольник ABC  окружности.

Источники: ПВГ 2014

Показать ответ и решение

Используя, основное свойство биссектрисы находим:

AB :BC :AC = 4:2 :3

PIC

Откуда

ha   2S∕a   2p  2+ 3+ 4  9
-r = S∕p-= a-= ---2---= 2
Ответ: 9 : 2

Ошибка.
Попробуйте повторить позже

Задача 20#80606

Кратчайшее расстояние от вершины B  треугольника ABC  до точек противолежащей стороны равно 12  . Найдите стороны AB  и  BC  этого треугольника, если       √ -
sin∠C =  3∕2  и AC = 5.

Источники: ПВГ 2013

Показать ответ и решение

Рассмотрим три возможных случая.

1) Углы A  и C  острые. Тогда       ∘
∠C = 60 и высота BH  равна 12. Но в этом случае      √ -
CH = 4 3  и основание H  высоты не может лежать на стороне AC.

2) Угол A  тупой, а угол C  острый. Тогда       ∘
∠C =60 ,AB = 12  и по теореме косинусов            2                 √---
144= 25+BC  − 5⋅BC ⇒ BC = (5+  501)∕2

3) Угол A  острый, а угол C  тупой. Тогда        ∘
∠C = 120 ,BC =12  и по теореме косинусов    2
AB  = 229

Ответ:

одна сторона равна 12,  а другая равна либо (5+ √501)∕2,  либо √229.

Рулетка
Вы можете получить скидку в рулетке!